Patents by Inventor Ming-Chiang Lee

Ming-Chiang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110169150
    Abstract: A semiconductor package includes a substrate unit, a die electrically connected to first contact pads, and a package body covering a first patterned conductive layer and the die. The substrate unit includes: (1) the first patterned conductive layer; (2) a first dielectric layer exposing a part of the first patterned conductive layer to form the first contact pads; (3) a second patterned conductive layer; (4) a second dielectric layer defining openings extending from the first patterned conductive layer to the second patterned conductive layer, where the second patterned conductive layer includes second contact pads exposed by the second dielectric layer; and (5) conductive posts extending from the first patterned conductive layer to the second contact pads through the openings, each of the conductive posts filling a corresponding one of the openings. At least one of the conductive posts defines a cavity.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 14, 2011
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yuan-Chang Su, Shih-Fu Huang, Chia-Cheng Chen, Tzu-Hui Chen, Kuang-Hsiung Chen, Pao-Ming Hsieh, Ming Chiang Lee, Bernd Karl Appelt
  • Publication number: 20100320610
    Abstract: A semiconductor package includes a substrate, a die, and a package body. The substrate includes: (a) a core including a resin reinforced with fibers; (b) a plurality of openings extending through the core; (c) a dielectric layer; and (d) a single conductive layer disposed between the dielectric layer and the core. Portions of a lower surface of the single conductive layer cover the plurality of openings to form a plurality of first contact pads for electrical connection external to the semiconductor package. Exposed portions of an upper surface of the single conductive layer form a plurality of second contact pads. The die is electrically connected to the plurality of second contact pads, and the package body encapsulates the die.
    Type: Application
    Filed: May 13, 2010
    Publication date: December 23, 2010
    Inventors: SHIH-FU HUANG, Yuan-Chang Su, Chia-Cheng Chen, Kuang-Hsiung Chen, Ming-Chiang Lee, Bernd Karl Appelt, Chia-Hsiung Hsieh
  • Publication number: 20100206618
    Abstract: The present invention relates to a coreless substrate and a method for making the same. The method for making the coreless substrate includes: (a) providing a carrier and a first conductive layer, wherein the carrier has a first surface and a second surface, and the first conductive layer is disposed on the first surface of the carrier; (b) forming a first embedded circuit on the first conductive layer; (c) forming a first dielectric layer so as to cover the first embedded circuit; (d) removing the carrier; (e) removing part of the first conductive layer so as to form at least one first pad; and (f) forming a first solder mask so as to cover the first embedded circuit and the first dielectric layer and to expose the first pad. Therefore, the coreless substrate of the present invention has high density of layout and involves low manufacturing cost.
    Type: Application
    Filed: January 21, 2010
    Publication date: August 19, 2010
    Inventors: Chien-Hao Wang, Ming-Chiang Lee
  • Publication number: 20100206622
    Abstract: A substrate structure and a package structure using the same are provided. The substrate structure includes a number of traces, a substrate core and a number of first metal tiles. The substrate core has a first surface and a second surface opposite to the first surface. The first metal tiles are disposed on one of the first surface and the second surface, the minimum pitch between adjacent two of the first metal tiles is the minimum process pitch.
    Type: Application
    Filed: September 2, 2009
    Publication date: August 19, 2010
    Inventors: Kuo-Hua Chen, Ming-Chiang Lee, Tsung-Hsun Lee, Chen-Chuan Fan
  • Publication number: 20100139965
    Abstract: An embedded circuit substrate comprising: a core structure having a first surface and a second surface opposite to each other; a first patterned conductive layer disposed on the first surface and embedded in the core structure; a second patterned conductive layer disposed on the second surface and embedded in the core structure; and a plurality of conductive blocks disposed in the core structure for conducting the first patterned conductive layer and the second patterned conductive layer is provided. Furthermore, a manufacturing method of an embedded circuit substrate is also provided.
    Type: Application
    Filed: November 19, 2009
    Publication date: June 10, 2010
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Chien-Hao Wang, Ming-Chiang Lee
  • Publication number: 20100140781
    Abstract: A quad flat non-leaded package including a first patterned conductive layer, a second patterned conductive layer, a chip, bonding wires and a molding compound is provided. The first patterned conductive layer defines a first space, and the second patterned conductive layer defines a second space, wherein the first space overlaps the second space and a part of the second patterned conductive layer surrounding the second space. The chip is disposed on the second patterned conductive layer. The bonding wires are connected between the chip and the second patterned conductive layer. The molding compound encapsulates the second patterned conductive layers, the chip and the bonding wires. In addition, a method of manufacturing a quad flat non-leaded package is also provided.
    Type: Application
    Filed: September 10, 2009
    Publication date: June 10, 2010
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Ming-Chiang Lee
  • Patent number: 7706149
    Abstract: A MEMS package includes a first board, a second board and a laminate material. The first board includes a lower metallic trace, a metallic diaphragm and a through opening. The lower metallic trace is located on the lower surface of the first board, and the metallic diaphragm is disposed on the lower metallic trace. The second board includes an upper metallic trace and a metallic electrode. The upper metallic trace is located on the upper surface of the second board, the metallic electrode is disposed on the upper metallic trace, and the metallic electrode is corresponding to the metallic diaphragm. The laminate material is disposed between the lower and upper metallic traces, and includes a hollow portion for accommodating the metallic electrode and metallic diaphragm, wherein a sensing unit is formed by the metallic electrode, the hollow portion and the metallic diaphragm, and is corresponding to the through opening.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 27, 2010
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Hsueh An Yang, Meng Jen Wang, Wei Chung Wang, Ming Chiang Lee, Wei Pin Huang, Feng Chen Cheng
  • Publication number: 20100055392
    Abstract: The present invention directs to fabrication methods of single-sided or double-sided multi-layered substrate by providing a lamination structure having at least a core structure and first and second laminate structures stacked over both surfaces of the core structure. The core structure functions as the temporary carrier for carrying the first and second laminate structures through the double-sided processing procedures. By way of the fabrication methods, the production yield can be greatly improved without increasing the production costs.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 4, 2010
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Bernd Karl Appelt, Yuan-Chang Su, Ming-Chiang Lee, You-Lung Yen
  • Patent number: 7614888
    Abstract: A flip chip package process is provided. First, a substrate strip including at least one substrate is provided. Next, at least one chip is disposed on the substrate, and the chip is electrically connected to the substrate. Then, a stencil having at least one opening and an air slot hole is disposed on an upper surface of the substrate strip, an air gap is formed between the stencil and the substrate strip, the air gap connects the opening and the air slot hole, and the chip is located in the opening. Finally, a liquid compound is formed into the opening of the stencil to encapsulate the chip, and a vacuum process is performed through the air slot hole and the air gap, so as to prevent the air inside the opening from being encapsulated by the liquid compound to become voids.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 10, 2009
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Shin-Hua Chao, Ming-Chiang Lee, Tai-Yuan Huang, Chao-Yuan Liu, Yung-Cheng Huang, Teck-Chong Lee, Jen-Chieh Kao, Jau-Shoung Chen
  • Publication number: 20090087947
    Abstract: A flip chip package process is provided. First, a substrate strip including at least one substrate is provided. Next, at least one chip is disposed on the substrate, and the chip is electrically connected to the substrate. Then, a stencil having at least one opening and an air slot hole is disposed on an upper surface of the substrate strip, an air gap is formed between the stencil and the substrate strip, the air gap connects the opening and the air slot hole, and the chip is located in the opening. Finally, a liquid compound is formed into the opening of the stencil to encapsulate the chip, and a vacuum process is performed through the air slot hole and the air gap, so as to prevent the air inside the opening from being encapsulated by the liquid compound to become voids.
    Type: Application
    Filed: September 24, 2008
    Publication date: April 2, 2009
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ho-Ming Tong, Shin-Hua Chao, Ming-Chiang Lee, Tai-Yuan Huang, Chao-Yuan Liu, Yung-Cheng Huang, Teck-Chong Lee, Jen-Chieh Kao, Jau-Shoung Chen
  • Publication number: 20090075027
    Abstract: A manufacturing process for a thermally enhanced package is disclosed. First, a substrate strip including at least a substrate is provided. Next, at least a chip is disposed on an upper surface of the substrate, and the chip is electrically connected to the substrate. Then, a prepreg and a heat dissipating metal layer are provided, and the heat dissipating metal layer is disposed on a first surface of the prepreg and a second surface of the prepreg faces toward the chip. Finally, the prepreg covers the chip by laminating the prepreg and the substrate.
    Type: Application
    Filed: July 31, 2008
    Publication date: March 19, 2009
    Applicants: ADVANCED SEMICONDUCTOR ENGINEERING, INC., ASE ELECTRONICS INC.
    Inventors: Ho-Ming Tong, Shin-Hua Chao, Ming-Chiang Lee, Tai-Yuan Huang, Chao-Yuan Liu, Yung-Cheng Huang, Teck-Chong Lee, Jen-Chieh Kao, Jau-Shoung Chen
  • Publication number: 20090046436
    Abstract: A MEMS package includes a first board, a second board and a laminate material. The first board includes a lower metallic trace, a metallic diaphragm and a through opening. The lower metallic trace is located on the lower surface of the first board, and the metallic diaphragm is disposed on the lower metallic trace. The second board includes an upper metallic trace and a metallic electrode. The upper metallic trace is located on the upper surface of the second board, the metallic electrode is disposed on the upper metallic trace, and the metallic electrode is corresponding to the metallic diaphragm. The laminate material is disposed between the lower and upper metallic traces, and includes a hollow portion for accommodating the metallic electrode and metallic diaphragm, wherein a sensing unit is formed by the metallic electrode, the hollow portion and the metallic diaphragm, and is corresponding to the through opening.
    Type: Application
    Filed: May 23, 2008
    Publication date: February 19, 2009
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING
    Inventors: Hsueh An YANG, Meng Jen WANG, Wei Chung WANG, Ming Chiang LEE, Wei Pin HUANG, Feng Chen CHENG