Patents by Inventor Ming-Feng Shieh

Ming-Feng Shieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9443768
    Abstract: A method of fabricating a fin-like field-effect transistor (FinFET) device includes providing a substrate having a first region and a second region, and forming a plurality of mandrel features in the first region with a first spacing. The method further includes forming first spacers along sidewalls of the mandrel features with a targeted width A, and forming second spacers with a first width W1 along sidewalls of the first spacers, wherein two back-to-back adjacent second spacers are separated by a gap. The method further includes depositing a dielectric material in the gap and in the second region, and performing a first cut thereby removing a first subset of the first spacers. Coincident with the removing of the first subset, the method further includes partially removing the dielectric material in the second region thereby forming a mesa of the dielectric material in the second region.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: September 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Feng Shieh, Hung-Chang Hsieh, Han-Wei Wu
  • Patent number: 9437415
    Abstract: Methods for aligning layers more accurately for FinFETs fabrication. An embodiment method includes forming a first pattern in a workpiece using a first photomask, forming a second pattern in the workpiece using a second photomask, the second photomask aligned to the first pattern, and aligning a third pattern to the first and the second patterns by aligning a first feature of the third pattern to a first feature of the first pattern in a first direction, and aligning a second feature of the third pattern to a first feature of the second pattern in a second direction orthogonal to the first direction.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Kuei-Liang Lu
  • Patent number: 9437497
    Abstract: A method of fabricating a fin-like field-effect transistor device is disclosed. The method includes forming mandrel features over a substrate and performing a first cut to remove mandrel features to form a first space. The method also includes performing a second cut to remove a portion of mandrel features to form a line-end and an end-to-end space. After the first and the second cuts, the substrate is etched using the mandrel features, with the first space and the end-to-end space as an etch mask, to form fins. Depositing a space layer to fully fill in a space between adjacent fins and cover sidewalls of the fins adjacent to the first space and the end-to-end space. The spacer layer is etched to form sidewall spacers on the fins adjacent to the first space and the end-to-end space and an isolation trench is formed in the first space and the end-to-end space.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 6, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Feng Shieh, Weng-Hung Tseng, Tzung-Hua Lin, Hung-Chang Hsieh
  • Publication number: 20160254183
    Abstract: A method for forming metal contacts within a semiconductor device includes forming a first-layer contact into a first dielectric layer that surrounds at least one gate electrode, the first-layer contact extending to a doped region of an underlying substrate. The method further includes forming a second dielectric layer over the first dielectric layer and forming a second-layer contact extending through the second dielectric layer to the first-layer contact.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Ming-Feng Shieh, Wen-Hung Tseng, Chih-Ming Lai, Ken-Hsien Hsieh, Tsai-Sheng Gau, Ru-Gun Liu
  • Publication number: 20160240675
    Abstract: A method includes forming an isolation feature in a semiconductor substrate; forming a first fin-like active region and a second fin-like active region in the semiconductor substrate and interposed by the isolation feature; forming a dummy gate stack on the isolation feature, wherein the dummy gate extends to the first fin-like active region from one side and to the second fin-like active region from another side.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20160190070
    Abstract: Provided is an alignment mark having a plurality of sub-resolution elements. The sub-resolution elements each have a dimension that is less than a minimum resolution that can be detected by an alignment signal used in an alignment process. Also provided is a semiconductor wafer having first, second, and third patterns formed thereon. The first and second patterns extend in a first direction, and the third pattern extend in a second direction perpendicular to the first direction. The second pattern is separated from the first pattern by a first distance measured in the second direction. The third pattern is separated from the first pattern by a second distance measured in the first direction. The third pattern is separated from the second pattern by a third distance measured in the first direction. The first distance is approximately equal to the third distance. The second distance is less than twice the first distance.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Ming-Feng Shieh, Ya Hui Chang, Ru-Gun Liu, TSONG-HUA OU, Ken-Hsien Hsieh, Burn Jeng Lin
  • Patent number: 9368594
    Abstract: A bipolar junction transistor (BJT) formed using a fin field-effect transistor (FinFET) complimentary metal-oxide-semiconductor (CMOS) process flow is provided. The BJT includes an emitter fin, a base fin, and a collector fin formed on a substrate. The base fin encloses the emitter fin and collector fin encloses the emitter fin. In some embodiments, the emitter fin, base fin, and collector fin have a square shape when viewed from above and are concentric with each other.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Sheng Chang, Yi-Tang Lin, Ming-Feng Shieh
  • Publication number: 20160163851
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 9, 2016
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 9362132
    Abstract: The present disclosure describes methods for transferring a desired layout into a target layer. The method includes a step of forming a spacer, having a second width, around a first and a second desired layout feature pattern of the desired layout over a semiconductor substrate. The first desired layout feature pattern is formed using a first sub-layout and the second desired layout feature pattern is formed using a second sub-layout. The first and second desired layout feature patterns are separated by a first width. The method further includes forming a third desired layout feature pattern according to a third sub-layout. The third desired layout feature pattern is shaped in part by the spacer. The method further includes removing the spacer from around the first and second desired layout feature pattern and etching the target layer using the first, second, and third layout feature patterns as masking features.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 9362169
    Abstract: The present disclosure describes methods for transferring a desired layout into a target layer on a semiconductor substrate. An embodiment of the methods includes forming a first desired layout feature as a first line over the target layer; forming a spacer around the first line; depositing a spacer-surrounding material layer; removing the spacer to form a fosse pattern trench surrounding the first line; and transferring the fosse pattern trench into the target layer to form a fosse feature trench in the target layer, wherein the fosse feature trench surrounds a first portion of the target layer that is underneath a protection layer. In some embodiments, the method further includes patterning a second desired layout feature of the desired layout into the target layer wherein the fosse feature trench and the protection layer serve to self-align the second desired layout feature with the first portion of the target layer.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Chih-Ming Lai, Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20160155639
    Abstract: The present disclosure provides a method for forming patterns in a semiconductor device. In accordance with some embodiments, the method includes providing a substrate, a patterning-target layer over the substrate, and a hard mask layer over the patterning-target layer; forming a first pattern in the hard mask layer; removing a trim portion from the first pattern in the hard mask layer to form a trimmed first pattern; forming a first resist layer over the hard mask layer; forming a main pattern in the first resist layer; and etching the patterning-target layer using the main pattern and the trimmed first pattern as etching mask elements to form a final pattern in the patterning-target layer. In some embodiments, the final pattern includes the main pattern subtracting a first overlapping portion between the main pattern and the trimmed first pattern.
    Type: Application
    Filed: January 25, 2016
    Publication date: June 2, 2016
    Inventors: Shih-Ming Chang, Ming-Feng Shieh, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 9356021
    Abstract: Embodiments of the present disclosure include self-alignment of two or more layers and methods of forming the same. An embodiment is a method for forming a semiconductor device including forming at least two gates over a substrate, forming at least two alignment structures over the at least two gates, forming spacers on the at least two alignment structures, and forming a first opening between a pair of the at least two alignment structures, the first opening extending a first distance from a top surface of the substrate. The method further includes filling the first opening with a first conductive material, forming a second opening between the spacers of at least one of the at least two alignment structures, the second opening extending a second distance from the top surface of the substrate, and filling the second opening with a second conductive material.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ru-Gun Liu, Ken-Hsien Hsieh, Ming-Feng Shieh, Chih-Ming Lai, Tsai-Sheng Gau
  • Publication number: 20160148815
    Abstract: A method for patterning fins for FinFET devices are disclosed. The method includes forming elongated protrusions on a semiconductor substrate and forming a mask covering a first portion of the elongated protrusions. The method further includes forming a spacer surrounding the mask. The mask and the spacer together cover a second portion of the elongated protrusions. The method further includes removing a portion of the elongated protrusions not covered by the mask and the spacer. In an embodiment, an outer boundary of the spacer and the mask corresponds to an outer boundary of a non-rectangular pattern.
    Type: Application
    Filed: February 1, 2016
    Publication date: May 26, 2016
    Inventors: Hoi-Tou Ng, Kuei-Liang Lu, Ming-Feng Shieh, Ru-Gun Liu
  • Patent number: 9337083
    Abstract: A method for forming metal contacts within a semiconductor device includes forming a first-layer contact into a first dielectric layer that surrounds at least one gate electrode, the first-layer contact extending to a doped region of an underlying substrate. The method further includes forming a second dielectric layer over the first dielectric layer and forming a second-layer contact extending through the second dielectric layer to the first-layer contact.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: May 10, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Wen-Hung Tseng, Chih-Ming Lai, Ken-Hsien Hsieh, Tsai-Sheng Gau, Ru-Gun Liu
  • Publication number: 20160124300
    Abstract: Disclosed is a mask for use in a lithography system having a defined resolution. The mask comprises first and second patterns that are greater than the defined resolution and a sub-resolution feature that is less than the defined resolution. Portions of the first and second patterns are positioned close to each other and separated by the sub-resolution feature in an intersection area. The size and shape of the sub-resolution feature are such that when the mask is used in the lithography system, a resulting pattern includes the first and second patterns interconnected with each other through the interconnection area.
    Type: Application
    Filed: January 8, 2016
    Publication date: May 5, 2016
    Inventors: Wei-De Ho, Ching-Yu Chang, Kuei-Liang Lu, Ming-Feng Shieh
  • Patent number: 9324866
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate; an isolation feature formed in the semiconductor substrate; a first active region and a second active region formed in the semiconductor substrate, wherein the first and second active regions extend in a first direction and are separated from each other by the isolation feature; and a dummy gate disposed on the isolation feature, wherein the dummy gate extends in the first direction to the first active region from one side and to the second active region from another side.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: April 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 9305841
    Abstract: A method including forming a trench over a layer disposed on a semiconductor substrate. The trench is filled with a first material to form a filled trench. A feature of a second material is formed over the filled trench. The feature is disposed over the filled trench and extends along two opposing sidewalls of the filled trench to a top surface of the layer. The feature is then planarized to expose a top surface of the filled trench and provide a first portion of the feature adjacent a first sidewall of the two opposing sidewalls of the filled trench and a second portion of the feature adjacent a second sidewall of the two opposing sidewalls of the filled trench. The first and second portions of the feature are used to define a dimension of an interconnect feature disposed over the semiconductor substrate.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: April 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chun Huang, Ming-Feng Shieh, Ken-Hsien Hsieh, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 9287125
    Abstract: Provided is an alignment mark having a plurality of sub-resolution elements. The sub-resolution elements each have a dimension that is less than a minimum resolution that can be detected by an alignment signal used in an alignment process. Also provided is a semiconductor wafer having first, second, and third patterns formed thereon. The first and second patterns extend in a first direction, and the third pattern extend in a second direction perpendicular to the first direction. The second pattern is separated from the first pattern by a first distance measured in the second direction. The third pattern is separated from the first pattern by a second distance measured in the first direction. The third pattern is separated from the second pattern by a third distance measured in the first direction. The first distance is approximately equal to the third distance. The second distance is less than twice the first distance.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Ya Hui Chang, Ru-Gun Liu, Tsong-Hua Ou, Ken-Hsien Hsieh, Burn Jeng Lin
  • Patent number: 9281193
    Abstract: A method includes forming a first pattern having a first feature of a first material on a semiconductor substrate. A second pattern with a second feature and third feature of a second material, interposed by the first feature, is formed on the semiconductor substrate. Spacer elements then are formed on sidewalls of the first feature, the second feature, and the third feature. After forming the spacer elements, the second material comprising the second and third features is selectively removed to form a first opening and a second opening. The first feature, the first opening and the second opening are used as a masking element to etch the target layer.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: March 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chun Huang, Chih-Ming Lai, Ken-Hsien Hsieh, Ming-Feng Shieh
  • Publication number: 20160035571
    Abstract: A method embodiment for patterning a semiconductor device includes patterning a dummy layer over a hard mask to form one or more dummy lines. A sidewall aligned spacer is conformably formed over the one or more dummy lines and the hard mask. A first reverse material layer is formed over the sidewall aligned spacer. A first photoresist is formed and patterned over the first reverse material layer. The first reverse material layer using the first photoresist as a mask, wherein the sidewall aligned spacer is not etched. The one or more dummy lines are removed, and the hard mask is patterned using the sidewall aligned spacer and the first reverse material layer as a mask. A material used for forming the sidewall aligned spacer has a higher selectivity than a material used for forming the first reverse material layer.
    Type: Application
    Filed: October 7, 2015
    Publication date: February 4, 2016
    Inventors: Yu-Sheng Chang, Cheng-Hsiung Tsai, Chung-Ju Lee, Hai-Ching Chen, Hsiang-Huan Lee, Ming-Feng Shieh, Ru-Gun Liu, Shau-Lin Shue, Tien-I Bao, Tsai-Sheng Gau, Yung-Hsu Wu