Patents by Inventor Ming-Ju Tsai

Ming-Ju Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200014095
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini
  • Patent number: 10511083
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: December 17, 2019
    Assignee: Apple Inc.
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Patent number: 10510359
    Abstract: A command processing device and method are provided. The command processing device includes a receiving device and a processing device. The receiving device receives an audio signal from an electronic device, wherein the audio data includes data signals and clock signals, and the data signals correspond to a first sound channel and the clock signals correspond to a second sound channel. The processing device is coupled to the receiving device. The processing device obtains the data signals from the first sound channel, and obtains the clock signals from the second sound channel. The processing device obtains one or more commands according to the data signals and clock signals, and performs operations corresponding to the commands.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: December 17, 2019
    Assignee: QUANTA COMPUTER INC.
    Inventors: Yu-Lin Hsieh, Chieh-Sheng Ding, Ming-Ju Tsai, Jyun-Ching Luo, Ming-Tsung Yen
  • Patent number: 10498012
    Abstract: An electronic device may be provided with wireless circuitry that includes one or more antennas and a transceiver. An integrated circuit may be coupled between the transceiver and the antenna and may include multiple tunable components such that tune the response of the antenna. The control signals may be generated by a tuning controller external to the integrated circuit. Shared control interface circuitry may be formed on the integrated circuit for interfacing between the tuning controller and each of the tunable components on the integrated circuit. The control interface circuitry may include a conductive path and decoupling circuitry that routes the control signals to corresponding control inputs on each of the tunable components. Sharing the control interface circuitry between each tunable component on the integrated circuit may minimize the space required on the integrated circuit for controlling the response of the antenna.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: James G. Judkins, Jing Zhu, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Thomas E. Biedka, Victor C. Lee, Xu Han
  • Patent number: 10476167
    Abstract: An electronic device may include antennas, a ground, and a housing. First and second gaps in the housing may define a segment that forms a resonating element for a first antenna. First, second, third, and fourth antenna feeds may be coupled between the segment and ground. Control circuitry may control adjustable components to place the device in first, second, third, or fourth modes. In the first and second modes, the first and fourth feeds convey signals at the same frequency using a multiple-input and multiple-output scheme while the second and third feeds are inactive. In the third mode, the second feed is active and the first, third, and fourth feeds are inactive. In the fourth mode, the third feed is active and the first, second, and fourth antenna feeds are inactive. Isolating return paths may be coupled between the segment and ground in the first and second modes.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Nanbo Jin, Hongfei Hu, Han Wang, Erdinc Irci, Erica J. Tong, Matthew A. Mow, Ming-Ju Tsai, Liang Han, Georgios Atmatzakis, Mattia Pascolini
  • Patent number: 10476136
    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Khan M. Salam, Mattia Pascolini, Ming-Ju Tsai, Simone Paulotto, Travis A. Barbieri, Victor C. Lee, Xu Han
  • Patent number: 10468756
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 5, 2019
    Assignee: Apple Inc.
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Patent number: 10418687
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini
  • Patent number: 10367570
    Abstract: An electronic device may be provided with antenna structures and control circuitry. The antenna structures may include an antenna resonating element arm, an antenna ground, and an antenna feed coupled between the antenna resonating element arm and the antenna ground. The electronic device may include a tunable component configured to tune a frequency response of the antenna structures. The electronic device may also include a substrate, a radio-frequency transceiver on the substrate, control circuitry configured to generate control signals, a flexible printed circuit, and a connector. The connector may mechanically secure the flexible printed circuit to the substrate and may be electrically coupled to the transceiver and the control circuitry. The flexible printed circuit may include a radio-frequency transmission line coupled between the antenna feed and the connector and a control signal path coupled between the tunable component and the connector.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 30, 2019
    Assignee: Apple Inc.
    Inventors: Yijun Zhou, Yiren Wang, Jennifer M. Edwards, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Patent number: 10320069
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna may have an antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna ground for the antenna may include a first conductive structure that is separated from the antenna resonating element by a first distance and a second conductive structure that is electrically connected to the first conductive structure and separated from the antenna resonating element by a second distance that is less than the first distance. A distributed impedance matching capacitor for the antenna may be formed from the second conductive structure and the antenna resonating element arm. The second conductive structure may be a conductive frame for an electronic component such as a sensor.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 11, 2019
    Assignee: Apple Inc.
    Inventors: Yijun Zhou, Jennifer M. Edwards, Yiren Wang, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Publication number: 20190173160
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Matthew A. Mow, Basim H. Noori, Mattia Pascolini, Xu Han, Victor C. Lee, Ming-Ju Tsai, Simone Paulotto
  • Patent number: 10305172
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on a printed circuit. The printed circuit may be a stacked printed circuit including multiple stacked substrates. Metal traces may form an array of patch antennas, Yagi antennas, and other antennas. Antenna signals associated with the antennas may pass through an inactive area in a display and through a dielectric-filled slot in a metal housing for the electronic device. Waveguide structures may be used to guide antenna signals within interior portions of the electronic device.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: May 28, 2019
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Boon W. Shiu, Kevin M. Marks, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Ruben Caballero, Yuehui Ouyang, Khan Salam
  • Patent number: 10305453
    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may include a first adjustable component coupled between the antenna resonating element arm and the antenna ground on a first side of the antenna feed and a second adjustable component coupled between the antenna resonating element arm and the antenna ground on a second side of the antenna feed. Control circuitry in the electronic device may adjust the first and second adjustable components between a first tuning mode, a second tuning mode, and a third tuning mode.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: May 28, 2019
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Yijun Zhou, Yiren Wang, Hao Xu, Ming-Ju Tsai, Victor C. Lee, Liang Han, Matthew A. Mow, Mattia Pascolini
  • Patent number: 10297902
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. Elongated conductive members may longitudinally divide openings between the peripheral conductive housing structures and the ground. The elongated conductive members may extend from an internal ground to outer ends of the elongated conductive members that are located adjacent to the gaps. Transmission lines may extend along the elongated conductive members to antenna feeds at the outer ends. The elongated conductive members may form open slots that serve as slot antenna resonating elements for the antenna.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: May 21, 2019
    Assignee: Apple Inc.
    Inventors: Nanbo Jin, Anand Lakshmanan, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai
  • Publication number: 20190081615
    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may include a first adjustable component coupled between the antenna resonating element arm and the antenna ground on a first side of the antenna feed and a second adjustable component coupled between the antenna resonating element arm and the antenna ground on a second side of the antenna feed. Control circuitry in the electronic device may adjust the first and second adjustable components between a first tuning mode, a second tuning mode, and a third tuning mode.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Jennifer M. Edwards, Yijun Zhou, Yiren Wang, Hao Xu, Ming-Ju Tsai, Victor C. Lee, Liang Han, Matthew A. Mow, Mattia Pascolini
  • Publication number: 20190081394
    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna in the electronic device may have an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna ground for the antenna may include a conductive frame for the display. The conductive frame may have a first portion that is separated from the antenna resonating element arm by a first distance and a second portion that is that is separated from the antenna resonating element arm by a second distance that is less than the first distance. The second portion may be configured to form a distributed impedance matching capacitance with the antenna resonating element arm.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Jennifer M. Edwards, Yijun Zhou, Yiren Wang, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Publication number: 20190081694
    Abstract: An electronic device may be provided with antenna structures and control circuitry. The antenna structures may include an antenna resonating element arm, an antenna ground, and an antenna feed coupled between the antenna resonating element arm and the antenna ground. The electronic device may include a tunable component configured to tune a frequency response of the antenna structures. The electronic device may also include a substrate, a radio-frequency transceiver on the substrate, control circuitry configured to generate control signals, a flexible printed circuit, and a connector. The connector may mechanically secure the flexible printed circuit to the substrate and may be electrically coupled to the transceiver and the control circuitry. The flexible printed circuit may include a radio-frequency transmission line coupled between the antenna feed and the connector and a control signal path coupled between the tunable component and the connector.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Yijun Zhou, Yiren Wang, Jennifer M. Edwards, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Publication number: 20190081393
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna may have an antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna ground for the antenna may include a first conductive structure that is separated from the antenna resonating element by a first distance and a second conductive structure that is electrically connected to the first conductive structure and separated from the antenna resonating element by a second distance that is less than the first distance. A distributed impedance matching capacitor for the antenna may be formed from the second conductive structure and the antenna resonating element arm. The second conductive structure may be a conductive frame for an electronic component such as a sensor.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Yijun Zhou, Jennifer M. Edwards, Yiren Wang, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Patent number: 10218052
    Abstract: An electronic device may have hybrid antennas that include slot antenna resonating elements formed from slots in a ground plane and planar inverted-F antenna resonating elements. The planar inverted-F antenna resonating elements may each have a planar metal member that overlaps one of the slots. The slot of each slot antenna resonating element may divide the ground plane into first and second portions. A return path and feed may be coupled in parallel between the planar metal member and the first portion of the ground plane. Tunable components such as tunable inductors may be used to tune the hybrid antennas. A tunable inductor may bridge the slot in hybrid antenna, may be coupled between the planar metal member of the planar inverted-F antenna resonating element and the ground plane, or multiple tunable inductors may bridge the slot on opposing sides of the planar inverted-F antenna resonating element.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: February 26, 2019
    Assignee: Apple Inc.
    Inventors: Mattia Pascolini, Umar Azad, Rodney A. Gomez Angulo, Erdinc Irci, Qingxiang Li, Matthew A. Mow, Harish Rajagopalan, Miroslav Samardzija, Ming-Ju Tsai
  • Patent number: 10205224
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 12, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Mattia Pascolini, Xu Han, Victor C. Lee, Ming-Ju Tsai, Simone Paulotto