Patents by Inventor Ming-Ju Tsai

Ming-Ju Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10200105
    Abstract: An electronic device may include a peripheral conductive housing wall. The housing wall may be patterned to form first and second continuous regions defining opposing edges of a patterned region. The patterned region may include slots that divide the wall into conductive structures between the first and second continuous regions. A tuning element for an antenna in the device may be formed from the conductive structures and the slots in the patterned region. The slots and the conductive structures in the patterned region may be configured to mitigate any excessive capacitances between the first and second continuous regions in one or more desired frequency bands to optimize antenna efficiency. The slots may be narrow enough so as to be invisible to the un-aided human eye. This may configure the first and second continuous regions to appear to a user as a single continuous piece of conductor.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Hongfei Hu, Yi Jiang, Ming-Ju Tsai, Enrique Ayala Vazquez, Erdinc Irci, Jiangfeng Wu, Lijun Zhang, Siwen Yong
  • Publication number: 20190027821
    Abstract: An electronic device may be provided with control signal generation circuitry that generates a differential pair of control signals, power supply circuitry that generates a bias voltage, and an antenna having a tuning circuit. First switching circuitry may be coupled to the power supply circuitry and the control signal generation circuitry. Second switching circuitry may be coupled to the tuning circuit. A pair of control lines may be coupled between the first and second switching circuitry. In a first switching mode, the power supply circuitry may transmit the bias voltage to the tuning circuit over one of the control lines. The bias voltage may charge storage circuitry coupled to the tuning circuit. In a second switching mode, the control signal generation circuitry may transmit the differential pair of control signals to the tuning circuit. The tuning circuit may be powered by the storage circuitry in the second switching mode.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: James G. Judkins, Jing Zhu, Liang Han, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Thomas E. Biedka, Victor C. Lee, Xu Han
  • Publication number: 20190027809
    Abstract: An electronic device may be provided with wireless circuitry that includes one or more antennas and a transceiver. An integrated circuit may be coupled between the transceiver and the antenna and may include multiple tunable components such that tune the response of the antenna. The control signals may be generated by a tuning controller external to the integrated circuit. Shared control interface circuitry may be formed on the integrated circuit for interfacing between the tuning controller and each of the tunable components on the integrated circuit. The control interface circuitry may include a conductive path and decoupling circuitry that routes the control signals to corresponding control inputs on each of the tunable components. Sharing the control interface circuitry between each tunable component on the integrated circuit may minimize the space required on the integrated circuit for controlling the response of the antenna.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: James G. Judkins, Jing Zhu, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Thomas E. Biedka, Victor C. Lee, Xu Han
  • Publication number: 20190027833
    Abstract: An electronic device may include antennas, a ground, and a housing. First and second gaps in the housing may define a segment that forms a resonating element for a first antenna. First, second, third, and fourth antenna feeds may be coupled between the segment and ground. Control circuitry may control adjustable components to place the device in first, second, third, or fourth modes. In the first and second modes, the first and fourth feeds convey signals at the same frequency using a multiple-input and multiple-output scheme while the second and third feeds are inactive. In the third mode, the second feed is active and the first, third, and fourth feeds are inactive. In the fourth mode, the third feed is active and the first, second, and fourth antenna feeds are inactive. Isolating return paths may be coupled between the segment and ground in the first and second modes.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: Enrique Ayala Vazquez, Nanbo Jin, Hongfei Hu, Han Wang, Erdinc Irci, Erica J. Tong, Matthew A. Mow, Ming-Ju Tsai, Liang Han, Georgios Atmatzakis, Mattia Pascolini
  • Publication number: 20190027808
    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: Matthew A. Mow, Basim H. Noori, Khan M. Salam, Mattia Pascolini, Ming-Ju Tsai, Simone Paulotto, Travis A. Barbieri, Victor C. Lee, Xu Han
  • Patent number: 10186769
    Abstract: An electronic device may be provided with control signal generation circuitry that generates a differential pair of control signals, power supply circuitry that generates a bias voltage, and an antenna having a tuning circuit. First switching circuitry may be coupled to the power supply circuitry and the control signal generation circuitry. Second switching circuitry may be coupled to the tuning circuit. A pair of control lines may be coupled between the first and second switching circuitry. In a first switching mode, the power supply circuitry may transmit the bias voltage to the tuning circuit over one of the control lines. The bias voltage may charge storage circuitry coupled to the tuning circuit. In a second switching mode, the control signal generation circuitry may transmit the differential pair of control signals to the tuning circuit. The tuning circuit may be powered by the storage circuitry in the second switching mode.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: January 22, 2019
    Assignee: Apple Inc.
    Inventors: James G. Judkins, Jing Zhu, Liang Han, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Thomas E. Biedka, Victor C. Lee, Xu Han
  • Publication number: 20190007120
    Abstract: An electronic device may include a peripheral conductive housing wall. The housing wall may be patterned to form first and second continuous regions defining opposing edges of a patterned region. The patterned region may include slots that divide the wall into conductive structures between the first and second continuous regions. A tuning element for an antenna in the device may be formed from the conductive structures and the slots in the patterned region. The slots and the conductive structures in the patterned region may be configured to mitigate any excessive capacitances between the first and second continuous regions in one or more desired frequency bands to optimize antenna efficiency. The slots may be narrow enough so as to be invisible to the un-aided human eye. This may configure the first and second continuous regions to appear to a user as a single continuous piece of conductor.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Hongfei Hu, Yi Jiang, Ming-Ju Tsai, Enrique Ayala Vazquez, Erdinc Irci, Jiangfeng Wu, Lijun Zhang, Siwen Yong
  • Patent number: 10103424
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be formed from printed circuit board Yagi antennas or other antennas. A millimeter wave transceiver may use the antennas to transmit and receive wireless signals. The antennas may be mounted at the corners of an electronic device housing or elsewhere in an electronic device. An electronic device housing may be formed from metal and may have an opening filled with dielectric. The antennas may be aligned with portions of the dielectric. Printed circuit board antennas may have reflectors, radiators, and directors. The reflectors, radiators, and directors may be arranged to align radiation patterns for the antennas with the plastic-filled slots or other dielectric regions in the metal housing.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 16, 2018
    Assignee: Apple Inc.
    Inventors: Basim Noori, Ming-Ju Tsai, Boon Wai Shiu, Matthew A. Mow, Yuehui Ouyang, Mattia Pascolini, Ruben Caballero
  • Patent number: 10056695
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: August 21, 2018
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Publication number: 20180233808
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on a printed circuit. The printed circuit may be a stacked printed circuit including multiple stacked substrates. Metal traces may form an array of patch antennas, Yagi antennas, and other antennas. Antenna signals associated with the antennas may pass through an inactive area in a display and through a dielectric-filled slot in a metal housing for the electronic device. Waveguide structures may be used to guide antenna signals within interior portions of the electronic device.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Basim H. Noori, Boon W. Shiu, Kevin M. Marks, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Ruben Caballero, Yuehui Ouyang, Khan Salam
  • Publication number: 20180219276
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Patent number: 9997828
    Abstract: An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 12, 2018
    Assignee: Apple Inc.
    Inventors: Yuehui Ouyang, Dean F. Darnell, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Nanbo Jin, Robert W. Schlub
  • Patent number: 9972892
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on a printed circuit. The printed circuit may be a stacked printed circuit including multiple stacked substrates. Metal traces may form an array of patch antennas, Yagi antennas, and other antennas. Antenna signals associated with the antennas may pass through an inactive area in a display and through a dielectric-filled slot in a metal housing for the electronic device. Waveguide structures may be used to guide antenna signals within interior portions of the electronic device.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 15, 2018
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Boon W. Shiu, Kevin M. Marks, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Ruben Caballero, Yuehui Ouyang, Khan Salam
  • Patent number: 9966667
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: May 8, 2018
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Patent number: 9960801
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: May 1, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Liang Han, Ming-Ju Tsai, Thomas E. Biedka, Victor Lee, James G. Judkins, Mattia Pascolini
  • Publication number: 20180090816
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Matthew A. Mow, Basim H. Noori, Mattia Pascolini, Xu Han, Victor C. Lee, Ming-Ju Tsai, Simone Paulotto
  • Patent number: 9930725
    Abstract: An electronic device may be provided with wireless circuitry. An application processor may generate wireless data that is to be transmitted using the wireless circuitry and may process wireless data that has been received using the wireless circuitry. The wireless circuitry may include multiple baseband processors, multiple associated radios, and front-end module and antenna circuitry. Sensors may be used to provide the application processor with sensor data. During operation, the application processor and the baseband processors may be used to transmit and receive wireless communications traffic. A multiradio controller integrated circuit that does not transmit or receive the wireless communications traffic may be used in controlling the wireless circuitry based on impedance measurements, sensor data, and other information.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Mattia Pascolini, Thomas E. Biedka, Liang Han, Ming-Ju Tsai, Victor Lee, James G. Judkins
  • Publication number: 20180083344
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Application
    Filed: February 10, 2017
    Publication date: March 22, 2018
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Publication number: 20180069317
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Publication number: 20180048052
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. Elongated conductive members may longitudinally divide openings between the peripheral conductive housing structures and the ground. The elongated conductive members may extend from an internal ground to outer ends of the elongated conductive members that are located adjacent to the gaps. Transmission lines may extend along the elongated conductive members to antenna feeds at the outer ends. The elongated conductive members may form open slots that serve as slot antenna resonating elements for the antenna.
    Type: Application
    Filed: September 14, 2017
    Publication date: February 15, 2018
    Inventors: Nanbo Jin, Anand Lakshmanan, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai