Patents by Inventor Ming-Jung Tsai

Ming-Jung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955918
    Abstract: A motor driver having a startup adjusting mechanism is provided. A steady-state detector circuit detects data for driving a motor to stably rotate to output a steady-state detected signal. A startup waveform pattern circuit selects one of a plurality of startup waveform patterns to output a startup waveform pattern signal according to the steady-state detected signal. A startup waveform generator circuit outputs a startup waveform signal according to the startup waveform pattern signal. A motor controlling circuit controls a motor driving circuit to start up the motor according to the startup waveform signal.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: April 9, 2024
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Publication number: 20240096787
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes an interconnection structure over a semiconductor substrate and a conductive pillar over the interconnection structure. The conductive pillar has a protruding portion extending towards the semiconductor substrate from a lower surface of the conductive pillar. The semiconductor device structure also includes an upper conductive via between the conductive pillar and the interconnection structure and a lower conductive via between the upper conductive via and the interconnection structure. The lower conductive via is electrically connected to the conductive pillar through the upper conductive via. The conductive pillar extends across opposite sidewalls of the upper conductive via and opposite sidewalls of the lower conductive via. A top view of an entirety of the second conductive via is separated from a top view of an entirety of the protruding portion.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Ming-Da CHENG, Wei-Hung LIN, Hui-Min HUANG, Chang-Jung HSUEH, Po-Hao TSAI, Yung-Sheng LIN
  • Publication number: 20230387832
    Abstract: A motor driver having a high success rate starting mechanism is provided. A multi-segment slope pattern circuit connects a plurality of values of waveforms of a starting waveform signal to form a curve. The multi-segment slope pattern circuit determines a plurality of slopes respectively of a plurality of curve segments included in the curve according to a plurality of parameters related to a motor. The multi-segment slope pattern circuit outputs a multi-segment slope pattern signal according to the plurality of slopes of the plurality of curve segments. A startup signal generating circuit outputs a first startup waveform signal according to the multi-segment slope pattern signal. A motor controller circuit controls a motor driving circuit to start up the motor according to the first startup waveform signal.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 30, 2023
    Inventor: MING-JUNG TSAI
  • Publication number: 20230387836
    Abstract: A motor driver having a startup adjusting mechanism is provided. A steady-state detector circuit detects data for driving a motor to stably rotate to output a steady-state detected signal. A startup waveform pattern circuit selects one of a plurality of startup waveform patterns to output a startup waveform pattern signal according to the steady-state detected signal. A startup waveform generator circuit outputs a startup waveform signal according to the startup waveform pattern signal. A motor controlling circuit controls a motor driving circuit to start up the motor according to the startup waveform signal.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 30, 2023
    Inventor: MING-JUNG TSAI
  • Publication number: 20230369998
    Abstract: A motor controller circuit having a rotational speed locking mechanism is provided. Each time when a motor commutates, a first signal generating circuit resets a first waveform signal and a second signal generating circuit resets a second waveform signal. An output signal generating circuit outputs a waveform output signal according to the first waveform signal and the second waveform signal. A motor controller circuit outputs an on-time signal according to the waveform output signal. A motor driving circuit outputs a driving signal to the motor to drive the motor to rotate according to the on-time signal.
    Type: Application
    Filed: June 21, 2022
    Publication date: November 16, 2023
    Inventor: MING-JUNG TSAI
  • Patent number: 11799404
    Abstract: A motor controller circuit having a rotational speed locking mechanism is provided. Each time when a motor commutates, a first signal generating circuit resets a first waveform signal and a second signal generating circuit resets a second waveform signal. An output signal generating circuit outputs a waveform output signal according to the first waveform signal and the second waveform signal. A motor controller circuit outputs an on-time signal according to the waveform output signal. A motor driving circuit outputs a driving signal to the motor to drive the motor to rotate according to the on-time signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: October 24, 2023
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 11791754
    Abstract: A motor driver having an automatic phase switching mechanism is provided. After a three-phase motor is started up, a back electromotive force detecting circuit starts detecting a back electromotive force signal of each of three phases of the three-phase motor. A driving waveform generating circuit extracts parts of a plurality of first wave segment patterns from a first wave segment pattern signal as a plurality of first wave segments of a first waveform signal according to the back electromotive force signal. A motor controlling circuit controls the motor driving circuit to drive the three-phase motor to rotate normally according to the first waveform signal.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: October 17, 2023
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 11742787
    Abstract: A motor controller circuit having a stable speed controlling mechanism is provided. A duty cycle determining circuit determines duty cycles of the plurality of waveforms respectively of the first waveform signals within each of a plurality of time intervals to output a duty cycle instructing signal, according to a target working period corresponding to a target rotational speed. A signal generating circuit outputs the plurality of first waveform signals according to the duty cycle instructing signal, and outputs a second waveform signal. A motor control circuit outputs a plurality of on-time signals according to the plurality of first waveform signals and the second waveform signal. A motor driving circuit is controlled to operate and drive a motor to rotate according to the plurality of on-time signals.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: August 29, 2023
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 11644041
    Abstract: A system and a method for automatically correcting a rotational speed of a motor of a fan are provided. After the fan is moved from an open space to a closed space, a sample and hold circuit samples and holds working periods of a driving signal by which the motor is driven to rotate at a first rotational speed as a first sampled working period, and a working period of a driving signal by which the motor is driven to rotate at a second rotational speed. An arithmetic circuit calculates a difference between the first sampled working period and a first reference working period, and a difference between the second sampled working period and a second reference working period. The arithmetic circuit calculates other working periods of driving signals by which the motor is driven to rotate at other rotational speeds based on the differences.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: May 9, 2023
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Publication number: 20220381256
    Abstract: A system and a method for automatically correcting a rotational speed of a motor of a fan are provided. After the fan is moved from an open space to a closed space, a sample and hold circuit samples and holds working periods of a driving signal by which the motor is driven to rotate at a first rotational speed as a first sampled working period, and a working period of a driving signal by which the motor is driven to rotate at a second rotational speed. An arithmetic circuit calculates a difference between the first sampled working period and a first reference working period, and a difference between the second sampled working period and a second reference working period. The arithmetic circuit calculates other working periods of driving signals by which the motor is driven to rotate at other rotational speeds based on the differences.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 1, 2022
    Inventor: MING-JUNG TSAI
  • Patent number: 11038448
    Abstract: A motor driving circuit includes a rotation speed request generator, a motor driving signal generating unit, an inverter circuit, a position detecting circuit, a current detecting module, a rotation speed signal lookup module, an automatic leading angle controller, and a modulation signal generating circuit. When the rotation speed request signal indicates that a rotation speed of a motor is adjusted to a current rotation speed, the rotation speed signal lookup module queries a lookup table and generates a leading angle indication signal for indicating a current leading angle as a adjusting angle, and the automatic leading angle controller generates a phase adjusting signal, and the modulation signal generation circuit roughly adjusts a modulation waveform with the adjusting phase. The modulation signal generating circuit performs a fine adjustment on the modulation waveforms according to a phase difference, thereby making the current zero-crossing point near the BEMF zero point.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: June 15, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 11038447
    Abstract: A system and a method for driving a motor with a frequency conversion mechanism are provided. The system includes a look-up table module, an oscillator circuit, a multi-frequency signal generator circuit, and a motor driver circuit. The look-up table module stores a preset driving signal. The oscillator circuit generates oscillating signals having different frequencies. The multi-frequency signal generator circuit outputs a multi-frequency signal according to the oscillating signals. One waveform segment of the multi-frequency signal in a modulation region has a first oscillating frequency. Another waveform segment of the multi-frequency signal outside the modulation region has a second oscillating frequency lower than the first oscillating frequency. When a back electromotive force or a phase current of the motor reaches zero within a time interval of the modulation region, the motor driver circuit drives the motor according to the preset driving signal and the multi-frequency signal.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: June 15, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 10998836
    Abstract: A system and a method of driving a motor are provided. A zero crossing reference module defines a zero-crossing region based on a current zero-crossing point of a coil of the motor, and a mode switching setting module sets a reference parameter of a back electromotive force when the motor rotates at a preset rotating speed. When the current zero-crossing point fails to fall in the zero-crossing region, a driving mode selector module selects a voltage detection mode. When a parameter of the back electromotive force is equal to the reference parameter, the driving mode selector module selects to switch back to a current detection mode. A motor driving controller module calculates a position of a rotor of the motor based on the current in the current detection mode and determines the position based on the back electromotive force in the voltage detection mode to drive the motor.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: May 4, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 10998839
    Abstract: A system and a method for driving a motor to rotate at a high speed are provided. The system includes a lookup table, a command detector, a pattern selector and a motor driver. The lookup table module is configured to store a reference waveform pattern and a modulated waveform pattern. An amplitude of the modulated waveform pattern is larger than an amplitude of the reference waveform pattern. The command detector is configured to receive a rotating speed command. The pattern selector is configured to receive the reference waveform pattern and the modulated waveform pattern, and select the reference waveform pattern or the modulated waveform pattern according to the rotating speed command. The motor driver is configured to output a driving signal to drive the motor according to the selected reference waveform pattern or modulated waveform pattern.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 4, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 10978973
    Abstract: A motor driving circuit for driving a motor is provided. The motor driving circuit includes a plurality of inverter circuits, a driving signal look-up table module, a driving signal generating unit, a duty cycle command detector, and a protection control circuit. The driving signal look-up table module performs a table lookup on an input driving signal to generate a driving waveform pattern signal while outputting a positive period indication signal. The duty cycle command detector generates a first protection start signal when a duty cycle corresponding to the input driving signal changes by more than a predetermined amount of change. The protection control circuit outputs a forced disable signal in a positive period interval in response to receiving the first protection start signal to control the lower bridge switch of one phase of the inverter circuits to be turned off.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: April 13, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Publication number: 20210083606
    Abstract: A system and a method for driving a motor with a frequency conversion mechanism are provided. The system includes a look-up table module, an oscillator circuit, a multi-frequency signal generator circuit, and a motor driver circuit. The look-up table module stores a preset driving signal. The oscillator circuit generates oscillating signals having different frequencies. The multi-frequency signal generator circuit outputs a multi-frequency signal according to the oscillating signals. One waveform segment of the multi-frequency signal in a modulation region has a first oscillating frequency. Another waveform segment of the multi-frequency signal outside the modulation region has a second oscillating frequency lower than the first oscillating frequency. When a back electromotive force or a phase current of the motor reaches zero within a time interval of the modulation region, the motor driver circuit drives the motor according to the preset driving signal and the multi-frequency signal.
    Type: Application
    Filed: January 9, 2020
    Publication date: March 18, 2021
    Inventor: MING-JUNG TSAI
  • Publication number: 20210067068
    Abstract: A motor driving circuit for driving a motor is provided. The motor driving circuit includes a plurality of inverter circuits, a driving signal look-up table module, a driving signal generating unit, a duty cycle command detector, and a protection control circuit. The driving signal look-up table module performs a table lookup on an input driving signal to generate a driving waveform pattern signal while outputting a positive period indication signal. The duty cycle command detector generates a first protection start signal when a duty cycle corresponding to the input driving signal changes by more than a predetermined amount of change. The protection control circuit outputs a forced disable signal in a positive period interval in response to receiving the first protection start signal to control the lower bridge switch of one phase of the inverter circuits to be turned off.
    Type: Application
    Filed: January 22, 2020
    Publication date: March 4, 2021
    Inventor: MING-JUNG TSAI
  • Publication number: 20210044226
    Abstract: A system and a method of driving a motor are provided. A zero crossing reference module defines a zero-crossing region based on a current zero-crossing point of a coil of the motor, and a mode switching setting module sets a reference parameter of a back electromotive force when the motor rotates at a preset rotating speed. When the current zero-crossing point fails to fall in the zero-crossing region, a driving mode selector module selects a voltage detection mode. When a parameter of the back electromotive force is equal to the reference parameter, the driving mode selector module selects to switch back to a current detection mode. A motor driving controller module calculates a position of a rotor of the motor based on the current in the current detection mode and determines the position based on the back electromotive force in the voltage detection mode to drive the motor.
    Type: Application
    Filed: February 11, 2020
    Publication date: February 11, 2021
    Inventor: MING-JUNG TSAI
  • Publication number: 20210044227
    Abstract: A motor driving circuit includes a rotation speed request generator, a motor driving signal generating unit, an inverter circuit, a position detecting circuit, a current detecting module, a rotation speed signal lookup module, an automatic leading angle controller, and a modulation signal generating circuit. When the rotation speed request signal indicates that a rotation speed of a motor is adjusted to a current rotation speed, the rotation speed signal lookup module queries a lookup table and generates a leading angle indication signal for indicating a current leading angle as a adjusting angle, and the automatic leading angle controller generates a phase adjusting signal, and the modulation signal generation circuit roughly adjusts a modulation waveform with the adjusting phase. The modulation signal generating circuit performs a fine adjustment on the modulation waveforms according to a phase difference, thereby making the current zero-crossing point near the BEMF zero point.
    Type: Application
    Filed: February 14, 2020
    Publication date: February 11, 2021
    Inventor: MING-JUNG TSAI
  • Publication number: 20210013819
    Abstract: A system and a method for driving a motor to rotate at a high speed are provided. The system includes a lookup table, a command detector, a pattern selector and a motor driver. The lookup table module is configured to store a reference waveform pattern and a modulated waveform pattern. An amplitude of the modulated waveform pattern is larger than an amplitude of the reference waveform pattern. The command detector is configured to receive a rotating speed command. The pattern selector is configured to receive the reference waveform pattern and the modulated waveform pattern, and select the reference waveform pattern or the modulated waveform pattern according to the rotating speed command. The motor driver is configured to output a driving signal to drive the motor according to the selected reference waveform pattern or modulated waveform pattern.
    Type: Application
    Filed: October 24, 2019
    Publication date: January 14, 2021
    Inventor: MING-JUNG TSAI