Patents by Inventor Ming-Shing Chen

Ming-Shing Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881493
    Abstract: An image sensor device includes a transistor disposed in a pixel region; a salicide block layer covering the pixel region; a first ILD layer covering the salicide block layer; a second ILD layer on the first ILD layer; a source contacts extending through the second and first ILD layers and the salicide block layer, and including first polysilicon plug in the first ILD layer and first conductive metal layer on the first polysilicon plug; and a drain contact extending through the second and first ILD layers and the salicide block, and including second polysilicon plug in the first ILD layer and second conductive metal layer on the second polysilicon plug.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ming-Shing Chen
  • Publication number: 20230082279
    Abstract: An image sensor device includes a transistor disposed in a pixel region; a salicide block layer covering the pixel region; a first ILD layer covering the salicide block layer; a second ILD layer on the first ILD layer; a source contacts extending through the second and first ILD layers and the salicide block layer, and including first polysilicon plug in the first ILD layer and first conductive metal layer on the first polysilicon plug; and a drain contact extending through the second and first ILD layers and the salicide block, and including second polysilicon plug in the first ILD layer and second conductive metal layer on the second polysilicon plug.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Ming-Shing Chen
  • Patent number: 11538844
    Abstract: An image sensor device includes a transistor disposed in a pixel region; a salicide block layer covering the pixel region; a first ILD layer covering the salicide block layer; a second ILD layer on the first ILD layer; a source contacts extending through the second and first ILD layers and the salicide block layer, and including first polysilicon plug in the first ILD layer, first self-aligned silicide layer on the polysilicon plug and first conductive metal layer on the first self-aligned silicide layer; and a drain contact extending through the second and first ILD layers and the salicide block, and including second polysilicon plug in first ILD layer, second self-aligned silicide layer on the second polysilicon plug, and second conductive metal layer on the second self-aligned silicide layer.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 27, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ming-Shing Chen
  • Patent number: 11387241
    Abstract: A method for fabricating flash memory is provided. A plurality of floating gate structures is formed on a gate dielectric layer in the memory device region of a substrate. The protective spacers are formed on two opposite sidewalls of each floating gate structure. A polysilicon gate structures are formed on the logic device region and a polysilicon control gate structure with an opening are formed on the memory device region to cover two adjacent floating gate structures, wherein the two protective spacers facing each other between two adjacent floating gate structures are exposed by the opening, and then the exposed protective spacer are removed. An ion implantation is performed on the substrate to form a source region between the two adjacent floating gate structures on each cell area. There will be no polysilicon material residue in the memory device region or pitting/undercutting phenomenon in the logic device region.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: July 12, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventor: Ming-Shing Chen
  • Publication number: 20220093620
    Abstract: A method for fabricating flash memory is provided. A plurality of floating gate structures is formed on a gate dielectric layer in the memory device region of a substrate. The protective spacers are formed on two opposite sidewalls of each floating gate structure. A polysilicon gate structures are formed on the logic device region and a polysilicon control gate structure with an opening are formed on the memory device region to cover two adjacent floating gate structures, wherein the two protective spacers facing each other between two adjacent floating gate structures are exposed by the opening, and then the exposed protective spacer are removed. An ion implantation is performed on the substrate to form a source region between the two adjacent floating gate structures on each cell area. There will be no polysilicon material residue in the memory device region or pitting/undercutting phenomenon in the logic device region.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventor: Ming-Shing Chen
  • Publication number: 20210217798
    Abstract: An image sensor device includes a transistor disposed in a pixel region; a salicide block layer covering the pixel region; a first ILD layer covering the salicide block layer; a second ILD layer on the first ILD layer; a source contacts extending through the second and first ILD layers and the salicide block layer, and including first polysilicon plug in the first ILD layer, first self-aligned silicide layer on the polysilicon plug and first conductive metal layer on the first self-aligned silicide layer; and a drain contact extending through the second and first ILD layers and the salicide block, and including second polysilicon plug in first ILD layer, second self-aligned silicide layer on the second polysilicon plug, and second conductive metal layer on the second self-aligned silicide layer.
    Type: Application
    Filed: February 19, 2020
    Publication date: July 15, 2021
    Inventor: Ming-Shing Chen
  • Patent number: 10636671
    Abstract: A planarization process includes the following steps. A first dielectric layer and a second dielectric layer are sequentially formed to conformally cover a pattern in a cell area and a substrate in the cell area and an isolation area, thereby the first dielectric layer and the second dielectric layer having a dishing in the isolation area. A dummy material is formed in the dishing and exposes a part of the second dielectric layer right above the pattern. A first removing process is performed to remove the exposed part of the second dielectric layer. The dummy material is removed. A second removing process is performed to remove an exposed part of the first dielectric layer by using the second dielectric layer as an etch stop layer. A third removing process is performed to remove the second dielectric layer and the first dielectric layer.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: April 28, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ming-Shing Chen
  • Patent number: 10134744
    Abstract: A semiconductor memory device includes a first inverter, a second inverter, a first and second inner access transistors, and a first and second outer access transistors. The first inverter includes a first pull-up transistor and a first pull-down transistor, the second inverter includes a second pull-up transistor (PL2) and a second pull-down transistor, and the first inverter and the second inverter forms a latch circuit. The first and second inner access transistors and the first and second outer access transistors are electrically connected to the latch circuit, and channel widths of the second inner access transistor and the second outer access transistor are different from each other.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: November 20, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Han Chen, Wei-Chi Chen, Ching Chang, Ming-Shing Chen, Chao-Hsien Wu, Chia-Hui Hwang, Lu-Ran Huang
  • Patent number: 9780171
    Abstract: A lateral-diffused metal oxide semiconductor device including a substrate, a second deep well, a gate, a source, a drain and a first dopant region is provided. The substrate includes a first deep well having a first conductive type. The second deep well having a second conductive type is disposed in the first deep well. The gate is disposed on the substrate and the boundary of the first and the second deep well. The source and the drain having a second conductive type are disposed beside the gate and in the first deep well and the second deep well respectively. The first dopant region having a first conductive type is disposed in the second deep well, wherein the first dopant region is separated from the drain. Moreover, a method for fabricating said lateral-diffused metal oxide semiconductor device is also provided.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 3, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Shing Chen, Wei-Ting Wu, Ming-Hui Chang, Chao-Chun Ning
  • Publication number: 20160372554
    Abstract: A lateral-diffused metal oxide semiconductor device including a substrate, a second deep well, a gate, a source, a drain and a first dopant region is provided. The substrate includes a first deep well having a first conductive type. The second deep well having a second conductive type is disposed in the first deep well. The gate is disposed on the substrate and the boundary of the first and the second deep well. The source and the drain having a second conductive type are disposed beside the gate and in the first deep well and the second deep well respectively. The first dopant region having a first conductive type is disposed in the second deep well, wherein the first dopant region is separated from the drain. Moreover, a method for fabricating said lateral-diffused metal oxide semiconductor device is also provided.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Ming-Shing Chen, Wei-Ting Wu, Ming-Hui Chang, Chao-Chun Ning
  • Patent number: 9490360
    Abstract: Provided is a semiconductor device including a P-type substrate, a P-type first well region, an N-type second well region, a gate, N-type source and drain regions, a dummy gate and an N-type deep well region. The first well region is in the substrate. The second well region is in the substrate proximate to the first well region. The gate is on the substrate and covers a portion of the first well region and a portion of the second well region. The source region is in the first well region at one side of the gate. The drain region is in the second well region at another side of the gate. The dummy gate is on the substrate between the gate and the drain region. The deep well region is in the substrate and surrounds the first and second well regions. An operation method of the semiconductor device is further provided.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: November 8, 2016
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Shing Chen, Ming-Hui Chang, Wei-Ting Wu, Ying-Chou Lai, Horng-Nan Chern, Chorng-Lih Young, Chin-Sheng Yang
  • Patent number: 9478457
    Abstract: Shallow trench isolation structures in a semiconductor device and a method for manufacturing the same. The method includes steps hereinafter. A substrate is provided with a pad oxide layer and a first patterned photoresist layer thereon. A first trench is formed in the substrate corresponding to the first patterned photoresist layer. A first dielectric layer is deposited in the first trench and on the substrate. A second patterned photoresist layer is provided to form an opening in the first dielectric layer and a second trench in the substrate corresponding to the second patterned photoresist layer. A second dielectric layer is deposited to cover the first trench and the second trench in the substrate and the first dielectric layer on the substrate. The second dielectric layer is removed by chemical-mechanical polishing until the first dielectric layer is exposed. The first dielectric layer on the substrate is selectively removed.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 25, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Ming-Shing Chen, Yu-Ting Wang, Ming-Hui Chang
  • Patent number: 9461166
    Abstract: A lateral-diffused metal oxide semiconductor device including a substrate, a second deep well, a gate, a source, a drain and a first dopant region is provided. The substrate includes a first deep well having a first conductive type. The second deep well having a second conductive type is disposed in the first deep well. The gate is disposed on the substrate and the boundary of the first and the second deep well. The source and the drain having a second conductive type are disposed beside the gate and in the first deep well and the second deep well respectively. The first dopant region having a first conductive type is disposed in the second deep well, wherein the first dopant region is separated from the drain. Moreover, a method for fabricating said lateral-diffused metal oxide semiconductor device is also provided.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: October 4, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Shing Chen, Wei-Ting Wu, Ming-Hui Chang, Chao-Chun Ning
  • Patent number: 9385236
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a plurality of fin shaped structures and a dummy gate structure. The fin shaped structures are disposed in a substrate, where at least one of the fin shaped structures has a tipped end. The dummy gate structure is disposed on the substrate, and includes an extending portion covering the tipped end.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: July 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ying Sun, En-Chiuan Liou, Ming-Shing Chen, Yu-Cheng Tung, Chih-Wei Yang
  • Patent number: 9379237
    Abstract: A LDMOS includes a gate structure disposed on the surface of a semiconductor substrate, a source region having a first conductivity type, a drain region having the first conductivity type, an isolation region surrounding the source/drain regions, a doped region having a second conductivity type, and a base region having the second conductivity type formed in the doped region. The source/drain regions are respectively disposed on two sides of the gate structure. The doped region surrounds the isolation region, and the bottom of the doped region is deeper than the bottom of the isolation region. The base region is disposed at the surface of the semiconductor substrate.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: June 28, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hui Chang, Wei-Ting Wu, Ming-Shing Chen
  • Publication number: 20160086843
    Abstract: Shallow trench isolation structures in a semiconductor device and a method for manufacturing the same. The method includes steps hereinafter. A substrate is provided with a pad oxide layer and a first patterned photoresist layer thereon. A first trench is formed in the substrate corresponding to the first patterned photoresist layer. A first dielectric layer is deposited in the first trench and on the substrate. A second patterned photoresist layer is provided to form an opening in the first dielectric layer and a second trench in the substrate corresponding to the second patterned photoresist layer. A second dielectric layer is deposited to cover the first trench and the second trench in the substrate and the first dielectric layer on the substrate. The second dielectric layer is removed by chemical-mechanical polishing until the first dielectric layer is exposed. The first dielectric layer on the substrate is selectively removed.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Ming-Shing Chen, Yu-Ting Wang, Ming-Hui Chang
  • Publication number: 20160027683
    Abstract: Shallow trench isolation structures in a semiconductor device and a method for manufacturing the same. The method include steps hereinafter. A substrate is provided with a pad oxide layer and a first patterned photoresist layer thereon. A first trench is formed in the substrate corresponding to the first patterned photoresist layer. A first dielectric layer is deposited in the first trench and on the substrate. A second patterned photoresist layer is provided to form an opening in the first dielectric layer and a second trench in the substrate corresponding to the second patterned photoresist layer. A second dielectric layer is deposited covering the first trench and the second trench in the substrate and the first dielectric layer on the substrate. The second dielectric layer is removing by chemical-mechanical polishing until the first dielectric layer is exposed. The first dielectric layer on the substrate selectively is removed.
    Type: Application
    Filed: August 12, 2014
    Publication date: January 28, 2016
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Ming-Shing Chen, Yu-Ting Wang, Ming-Hui Chang
  • Patent number: 9236289
    Abstract: Shallow trench isolation structures in a semiconductor device and a method for manufacturing the same. The method include steps hereinafter. A substrate is provided with a pad oxide layer and a first patterned photoresist layer thereon. A first trench is formed in the substrate corresponding to the first patterned photoresist layer. A first dielectric layer is deposited in the first trench and on the substrate. A second patterned photoresist layer is provided to form an opening in the first dielectric layer and a second trench in the substrate corresponding to the second patterned photoresist layer. A second dielectric layer is deposited covering the first trench and the second trench in the substrate and the first dielectric layer on the substrate. The second dielectric layer is removing by chemical-mechanical polishing until the first dielectric layer is exposed. The first dielectric layer on the substrate selectively is removed.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: January 12, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Ming-Shing Chen, Yu-Ting Wang, Ming-Hui Chang
  • Publication number: 20150236150
    Abstract: Provided is a semiconductor device including a P-type substrate, a P-type first well region, an N-type second well region, a gate, N-type source and drain regions, a dummy gate and an N-type deep well region. The first well region is in the substrate. The second well region is in the substrate proximate to the first well region. The gate is on the substrate and covers a portion of the first well region and a portion of the second well region. The source region is in the first well region at one side of the gate. The drain region is in the second well region at another side of the gate. The dummy gate is on the substrate between the gate and the drain region. The deep well region is in the substrate and surrounds the first and second well regions. An operation method of the semiconductor device is further provided.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: United Microelectronics Corp.
    Inventors: Ming-Shing Chen, Ming-Hui Chang, Wei-Ting Wu, Ying-Chou Lai, Horng-Nan Chern, Chorng-Lih Young, Chin-Sheng Yang
  • Publication number: 20150123197
    Abstract: A lateral-diffused metal oxide semiconductor device including a substrate, a second deep well, a gate, a source, a drain and a first dopant region is provided. The substrate includes a first deep well having a first conductive type. The second deep well having a second conductive type is disposed in the first deep well. The gate is disposed on the substrate and the boundary of the first and the second deep well. The source and the drain having a second conductive type are disposed beside the gate and in the first deep well and the second deep well respectively. The first dopant region having a first conductive type is disposed in the second deep well, wherein the first dopant region is separated from the drain. Moreover, a method for fabricating said lateral-diffused metal oxide semiconductor device is also provided.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Shing Chen, Wei-Ting Wu, Ming-Hui Chang, Chao-Chun Ning