Patents by Inventor Ming-Yu Liu

Ming-Yu Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200334502
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Patent number: 10789678
    Abstract: A superpixel sampling network utilizes a neural network coupled to a differentiable simple linear iterative clustering component to determine pixel-superpixel associations from a set of pixel features output by the neural network. The superpixel sampling network computes updated superpixel centers and final pixel-superpixel associations over a number of iterations.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 29, 2020
    Assignee: NVIDIA Corp.
    Inventors: Varun Jampani, Deqing Sun, Ming-Yu Liu, Jan Kautz
  • Publication number: 20200302250
    Abstract: A generative model can be used for generation of spatial layouts and graphs. Such a model can progressively grow these layouts and graphs based on local statistics, where nodes can represent spatial control points of the layout, and edges can represent segments or paths between nodes, such as may correspond to road segments. A generative model can utilize an encoder-decoder architecture where the encoder is a recurrent neural network (RNN) that encodes local incoming paths into a node and the decoder is another RNN that generates outgoing nodes and edges connecting an existing node to the newly generated nodes. Generation is done iteratively, and can finish once all nodes are visited or another end condition is satisfied. Such a model can generate layouts by additionally conditioning on a set of attributes, giving control to a user in generating the layout.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Hang Chu, Daiqing Li, David Jesus Acuna Marrero, Amlan Kar, Maria Shugrina, Ming-Yu Liu, Antonio Torralba Barriuso, Sanja Fidler
  • Patent number: 10769500
    Abstract: System and method for an active learning system including a sensor obtains data from a scene including a set of images having objects. A memory to store active learning data including an object detector trained for detecting objects in images. A processor in communication with the memory, is configured to detect a semantic class and a location of at least one object in an image selected from the set of images using the object detector to produce a detection metric as a combination of an uncertainty of the object detector about the semantic class of the object in the image (classification) and an uncertainty of the object detector about the location of the object in the image (localization). Using an output interface or a display type device, in communication with the processor, to display the image for human labeling when the detection metric is above a threshold.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 8, 2020
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Teng-Yok Lee, Chieh-Chi Kao, Pradeep Sen, Ming-Yu Liu
  • Patent number: 10748036
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 18, 2020
    Assignee: NVIDIA Corporation
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20200242774
    Abstract: A user can create a basic semantic layout that includes two or more regions identified by the user, each region being associated with a semantic label indicating a type of object(s) to be rendered in that region. The semantic layout can be provided as input to an image synthesis network. The network can be a trained machine learning network, such as a generative adversarial network (GAN), that includes a conditional, spatially-adaptive normalization layer for propagating semantic information from the semantic layout to other layers of the network. The synthesis can involve both normalization and de-normalization, where each region of the layout can utilize different normalization parameter values. An image is inferred from the network, and rendered for display to the user. The user can change labels or regions in order to cause a new or updated image to be generated.
    Type: Application
    Filed: December 19, 2019
    Publication date: July 30, 2020
    Inventors: Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Junyan Zhu
  • Publication number: 20200242736
    Abstract: A few-shot, unsupervised image-to-image translation (“FUNIT”) algorithm is disclosed that accepts as input images of previously-unseen target classes. These target classes are specified at inference time by only a few images, such as a single image or a pair of images, of an object of the target type. A FUNIT network can be trained using a data set containing images of many different object classes, in order to translate images from one class to another class by leveraging few input images of the target class. By learning to extract appearance patterns from the few input images for the translation task, the network learns a generalizable appearance pattern extractor that can be applied to images of unseen classes at translation time for a few-shot image-to-image translation task.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Ming-Yu Liu, Xun Huang, Tero Karras, Timo Aila, Jaakko Lehtinen
  • Publication number: 20200242771
    Abstract: A user can create a basic semantic layout that includes two or more regions identified by the user, each region being associated with a semantic label indicating a type of object(s) to be rendered in that region. The semantic layout can be provided as input to an image synthesis network. The network can be a trained machine learning network, such as a generative adversarial network (GAN), that includes a conditional, spatially-adaptive normalization layer for propagating semantic information from the semantic layout to other layers of the network. The synthesis can involve both normalization and de-normalization, where each region of the layout can utilize different normalization parameter values. An image is inferred from the network, and rendered for display to the user. The user can change labels or regions in order to cause a new or updated image to be generated.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Junyan Zhu
  • Publication number: 20200204822
    Abstract: A method, computer readable medium, and system are disclosed for action video generation. The method includes the steps of generating, by a recurrent neural network, a sequence of motion vectors from a first set of random variables and receiving, by a generator neural network, the sequence of motion vectors and a content vector sample. The sequence of motion vectors and the content vector sample are sampled by the generator neural network to produce a video clip.
    Type: Application
    Filed: March 6, 2020
    Publication date: June 25, 2020
    Inventors: Ming-Yu Liu, Xiaodong Yang, Jan Kautz, Sergey Tulyakov
  • Publication number: 20200160178
    Abstract: In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar—such as a probabilistic grammar—and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Amlan Kar, Aayush Prakash, Ming-Yu Liu, David Jesus Acuna Marrero, Antonio Torralba Barriuso, Sanja Fidler
  • Patent number: 10595039
    Abstract: A method, computer readable medium, and system are disclosed for action video generation. The method includes the steps of generating, by a recurrent neural network, a sequence of motion vectors from a first set of random variables and receiving, by a generator neural network, the sequence of motion vectors and a content vector sample. The sequence of motion vectors and the content vector sample are sampled by the generator neural network to produce a video clip.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: March 17, 2020
    Assignee: NVIDIA Corporation
    Inventors: Ming-Yu Liu, Xiaodong Yang, Jan Kautz, Sergey Tulyakov
  • Patent number: 10593020
    Abstract: An image processing method extracts consecutive input blurry frames from a video, and generates sharp frames corresponding to the input blurry frames. An optical flow is determined between the sharp frames, and the optical flow is used to compute a per-pixel blur kernel. The blur kernel is used to reblur each of the sharp frames into a corresponding re-blurred frame. The re-blurred frame is used to fine-tune the deblur network by minimizing the distance between the re-blurred frame and the input blurry frame.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 17, 2020
    Assignee: NVIDIA Corp.
    Inventors: Jinwei Gu, Orazio Gallo, Ming-Yu Liu, Jan Kautz, Huaijin Chen
  • Publication number: 20200074707
    Abstract: One embodiment of a method includes applying a first generator model to a semantic representation of an image to generate an affine transformation, where the affine transformation represents a bounding box associated with at least one region within the image. The method further includes applying a second generator model to the affine transformation and the semantic representation to generate a shape of an object. The method further includes inserting the object into the image based on the bounding box and the shape.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 5, 2020
    Inventors: Donghoon LEE, Sifei LIU, Jinwei GU, Ming-Yu LIU, Jan KAUTZ
  • Publication number: 20190362502
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Publication number: 20190355103
    Abstract: Missing image content is generated using a neural network. In an embodiment, a high resolution image and associated high resolution semantic label map are generated from a low resolution image and associated low resolution semantic label map. The input image/map pair (low resolution image and associated low resolution semantic label map) lacks detail and is therefore missing content. Rather than simply enhancing the input image/map pair, data missing in the input image/map pair is improvised or hallucinated by a neural network, creating plausible content while maintaining spatio-temporal consistency. Missing content is hallucinated to generate a detailed zoomed in portion of an image. Missing content is hallucinated to generate different variations of an image, such as different seasons or weather conditions for a driving video.
    Type: Application
    Filed: March 14, 2019
    Publication date: November 21, 2019
    Inventors: Seung-Hwan Baek, Kihwan Kim, Jinwei Gu, Orazio Gallo, Alejandro Jose Troccoli, Ming-Yu Liu, Jan Kautz
  • Publication number: 20190340728
    Abstract: A superpixel sampling network utilizes a neural network coupled to a differentiable simple linear iterative clustering component to determine pixel-superpixel associations from a set of pixel features output by the neural network. The superpixel sampling network computes updated superpixel centers and final pixel-superpixel associations over a number of iterations.
    Type: Application
    Filed: September 13, 2018
    Publication date: November 7, 2019
    Inventors: Varun Jampani, Deqing Sun, Ming-Yu Liu, Jan Kautz
  • Patent number: 10467763
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 5, 2019
    Assignee: NVIDIA Corporation
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Patent number: 10424069
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 24, 2019
    Assignee: NVIDIA Corporation
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Patent number: 10417524
    Abstract: An image processing system includes a memory to store a classifier and a set of labeled images for training the classifier, wherein each labeled image is labeled as either a positive image that includes an object of a specific type or a negative image that does not include the object of the specific type, wherein the set of labeled images has a first ratio of the positive images to the negative images. The system includes an input interface to receive a set of input images, a processor to determine a second ratio of the positive images, to classify the input images into positive and negative images to produce a set of classified images, and to select a subset of the classified images having the second ratio of the positive images to the negative images, and an output interface to render the subset of the input images for labeling.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: September 17, 2019
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Chen Feng, Ming-Yu Liu, Chieh-Chi Kao, Teng-Yok Lee
  • Publication number: 20190279075
    Abstract: A source image is processed using an encoder network to determine a content code representative of a visual aspect of the source object represented in the source image. A target class is determined, which can correspond to an entire population of objects of a particular type. The user may specify specific objects within the target class, or a sampling can be done to select objects within the target class to use for the translation. Style codes for the selected target objects are determined that are representative of the appearance of those target objects. The target style codes are provided with the source content code as input to a translation network, which can use the codes to infer a set of images including representations of the selected target objects having the visual aspect determined from the source image.
    Type: Application
    Filed: February 19, 2019
    Publication date: September 12, 2019
    Inventors: Ming-Yu Liu, Xun Huang