Patents by Inventor Minhua Shao

Minhua Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9153823
    Abstract: A method of forming a catalyst structure includes providing a catalyst support structure having a core and an inner carbide film on the core, depositing catalyst nanoparticles on the catalyst support structure, and forming an outer carbide film on the catalyst support structure after the step of depositing catalyst nanoparticles. The outer carbide film is preferentially formed on the catalyst support structure compared to the catalyst particles.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: October 6, 2015
    Assignee: Audi AG
    Inventors: Minhua Shao, Belabbes Merzougui
  • Patent number: 9147884
    Abstract: A supported catalyst includes a plurality of support particles that each include a carbon support and a layer disposed around the carbon support. The layer is selected from a metal carbide, metal oxycarbide, and combinations thereof. A catalytic material is disposed on the layers of the support particles.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: September 29, 2015
    Assignee: Audi AG
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo, Jingguang Chen
  • Publication number: 20150255798
    Abstract: According to one embodiment, a platinum alloy particle includes a core comprising a material that is different from platinum. A shell on the core comprises platinum. The shell has a plurality of facets. At least a majority of the facets are {111} facets.
    Type: Application
    Filed: October 22, 2012
    Publication date: September 10, 2015
    Inventor: Minhua Shao
  • Patent number: 9065141
    Abstract: A catalyst support for an electrochemical system includes a high surface area refractory material core structure and boron-doped diamond. The BDD modifies the high surface area refractory material core structure.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 23, 2015
    Assignee: AUDI AG
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo
  • Patent number: 8968967
    Abstract: A fuel cell catalyst support includes a fluoride-doped metal oxide/phosphate support structure and a catalyst layer, supported on such fluoride-doped support structure. In one example, the support structure is a sub-stechiometric titanium oxide and/or indium-tin oxide (ITO) partially coated or mixed with a fluoride-doped metal oxide or metal phosphate. In another example, the support structure is fluoride-doped and mixed with at least one of low surface carbon, boron-doped diamond, carbides, borides, and silicides.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 3, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo
  • Patent number: 8920985
    Abstract: A method of generating electrical power includes flowing hydrogen across an anode, splitting the hydrogen into protons and electrons using a catalyst attached to the anode, directing the electrons to a circuit to produce electrical power, flowing oxygen across a cathode, splitting the oxygen molecules into oxygen atoms using a cathode catalyst, passing the protons through an electrolyte to the cathode, and combining the protons with oxygen to form water. The cathode catalyst includes a plurality of nanoparticles having terraces formed of platinum, and corner regions and edge regions formed of a second metal.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Patent number: 8921260
    Abstract: A catalytic nanoparticle includes a porous, hollow core and an atomically thin layer of platinum atoms on the core. The core is a porous palladium, palladium-M or platinum-M core, where M is selected from the group consisting of gold, iridium, osmium, palladium, rhenium, rhodium and ruthenium.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Lesia V. Protsailo
  • Publication number: 20140155252
    Abstract: A method of forming a catalyst structure includes providing a catalyst support structure having a core and an inner carbide film on the core, depositing catalyst nanoparticles on the catalyst support structure, and forming an outer carbide film on the catalyst support structure after the step of depositing catalyst nanoparticles. The outer carbide film is preferentially formed on the catalyst support structure compared to the catalyst particles.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 5, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Minhua Shao, Belabbes Merzougui
  • Publication number: 20140134060
    Abstract: A natural gas reforming catalyst includes a metal core and rhodium deposited on the metal core. A natural gas reformer includes a hydrocarbon inlet, a reforming catalyst for generating hydrogen from a hydrocarbon and water and a hydrogen outlet. The reforming catalyst includes a metal core and a rhodium layer deposited on the metal core. A method for preparing a natural gas reforming catalyst includes adding a rhodium compound and a metal core to a reaction vessel and depositing the rhodium compound on the metal core.
    Type: Application
    Filed: May 10, 2011
    Publication date: May 15, 2014
    Applicant: ClearEdge Power Corporation
    Inventor: Minhua Shao
  • Publication number: 20140096645
    Abstract: A method for removing a surfactant from a palladium nanoparticle includes exposing the palladium nanoparticle to hydrogen and removing the surfactant from the palladium nanoparticle. A method includes synthesizing a palladium nanoparticle using a surfactant. The surfactant influences a geometric property of the palladium nanoparticle and bonds to the palladium nanoparticle. The method also includes exposing the palladium nanoparticle to hydrogen to remove the surfactant from the palladium nanoparticle.
    Type: Application
    Filed: June 8, 2011
    Publication date: April 10, 2014
    Inventor: Minhua Shao
  • Patent number: 8679704
    Abstract: A catalyst structure for an electrochemical cell includes a catalyst support structure, catalyst particles and an outer carbide film. The catalyst particles are deposited on the catalyst support structure. The outer carbide film is formed on the catalyst support structure. The outer carbide film surrounds the catalyst particles.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: March 25, 2014
    Assignee: United Technologies Corporation
    Inventors: Minhua Shao, Belabbes Merzougui
  • Publication number: 20140038078
    Abstract: A catalytic particle for a fuel cell includes a palladium nanoparticle core and a platinum shell. The palladium nanoparticle core has an increased area of {100} or {111} surfaces compared to a cubo-octahedral. The platinum shell is on an outer surface of the palladium nanoparticle core. The platinum shell is formed by deposition of an atomically thin layer of platinum atoms covering the majority of the outer surface of the palladium nanoparticle.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 6, 2014
    Applicant: United Technologies Corporation
    Inventor: Minhua Shao
  • Publication number: 20130340915
    Abstract: An example fuel cell electrode forming method includes covering at least a portion of a copper monolayer with a liquid platinum and replacing the copper monolayer to form a platinum monolayer from the liquid platinum.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Minhua Shao, Sathya Motupally, Belabbes Merzougui, Lesia V. Protsailo
  • Publication number: 20130324391
    Abstract: A method for forming catalytic nanoparticles includes forming core-shell catalytic nanoparticles and processing the core-shell catalytic nanoparticles. The core-shell catalytic nanoparticles have a palladium core enclosed by a platinum shell. The core-shell catalytic nanoparticles are processed to increase the percentage of the surface area of the core-shell catalytic nanoparticles covered by the platinum shell.
    Type: Application
    Filed: February 3, 2011
    Publication date: December 5, 2013
    Applicant: United Technologies Corporation
    Inventor: Minhua Shao
  • Publication number: 20130324394
    Abstract: A method of forming a catalyst material includes hindering the reaction rate of a displacement reaction and controlling the formation of platinum clusters, where an atomic layer of metal atoms is displaced with platinum atoms, to produce a catalyst material that includes an atomic layer of the platinum atoms.
    Type: Application
    Filed: February 22, 2011
    Publication date: December 5, 2013
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Minhua Shao, Michael Paul Humbert, Keiichi Kaneko
  • Publication number: 20130295486
    Abstract: A unitized electrode assembly for a fuel cell includes an anode electrode, a cathode electrode, an electrolyte and palladium catalytic nanoparticles. The electrolyte is positioned between the cathode electrode and the anode electrode. The palladium catalytic nanoparticles are positioned between the electrolyte and one of the anode electrode and the cathode electrode. The palladium catalytic nanoparticles have a {100} enriched structure. A majority of the surface area of the palladium catalytic nanoparticles is exposed to the UEA environment.
    Type: Application
    Filed: January 19, 2011
    Publication date: November 7, 2013
    Inventor: Minhua Shao
  • Patent number: 8389175
    Abstract: A fuel cell (70) having an anode (72), a cathode (78) and an electrolyte (76) between the anode (72) and the cathode (78) includes a cathode catalyst (80) formed of a plurality of nanoparticles. Each nanoparticle (20) has a plurality of terraces (26) formed of platinum surface atoms (14), and a plurality of edge (28) and corner regions (29) formed of atoms from a second metal (30)—The cathode catalyst may be formed by combining a platinum nanoparticle with a metal salt in a solution. Ions from the second metal react with platinum and replace platinum atoms on the nanoparticle. The second metal atoms at the corner and edge regions of the nanoparticle, as well as at any surface defects, result in a more stable catalyst structure. In some embodiments, the fuel cell (70) is a proton exchange membrane fuel cell and the nanoparticles are tetrahedron-shaped. In some embodiments, the fuel cell (70) is a phosphoric acid fuel cell and the nanoparticles are cubic-shaped.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 5, 2013
    Assignee: UTC Power Corporation
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Publication number: 20130011771
    Abstract: A supported catalyst includes a plurality of support particles that each include a carbon support and a layer disposed around the carbon support. The layer is selected from a metal carbide, metal oxycarbide, and combinations thereof. A catalytic material is disposed on the layers of the support particles.
    Type: Application
    Filed: May 10, 2010
    Publication date: January 10, 2013
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo, Jingguang Chen
  • Publication number: 20120329642
    Abstract: A fuel cell catalyst comprises a support having a core arranged on the support. In one example, the core includes palladium nanoparticles. A layer, which is gold in one example, is arranged on the core. A platinum overlayer is arranged on the gold layer. The intermediate gold layer greatly increases the mass activity of the platinum compared to catalysts in which platinum is deposited directly onto the palladium without any intermediate gold layer.
    Type: Application
    Filed: December 28, 2009
    Publication date: December 27, 2012
    Applicant: UTC Power Corporation
    Inventor: Minhua Shao
  • Publication number: 20120316060
    Abstract: A catalytic nanoparticle includes a porous, hollow core and an atomically thin layer of platinum atoms on the core. The core is a porous palladium, palladium-M or platinum-M core, where M is selected from the group consisting of gold, iridium, osmium, palladium, rhenium, rhodium and ruthenium.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 13, 2012
    Applicant: UTC POWER CORPORATION
    Inventors: Minhua Shao, Lesia V. Protsailo