Patents by Inventor Mir Ashkan SEYEDI

Mir Ashkan SEYEDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11503387
    Abstract: Systems and methods are provided for zero-added latency communication between nodes over an optical fabric. In various embodiments, a photonic interface system is provided that comprises a plurality of optical routing elements and optical signal sources. Each node within a cluster is assigned an intra-cluster wavelength and an inter-cluster wavelength. All the nodes in a cluster are directly connected and each node in a cluster is directly connected to one node in each of the plurality of clusters. When an optical signal from a different cluster is received at a node serving as the cluster interface, the photonics interface system allows all wavelength signals other than the node's assigned wavelength to pass through and couple those signals to an intra-cluster transmission signal. Zero latency is added in rerouting the data through an intermediate node.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: November 15, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Luca Ramini
  • Patent number: 11469764
    Abstract: One embodiment provides an optical encoder. The optical encoder includes an optical comb source to generate a multi-wavelength optical signal; a number of optical filters sequentially coupled to the optical comb source, with a respective optical filter being tunable to pass or block a particular wavelength of the multi-wavelength optical signal based on a corresponding bit value of a multi-bit search word; and a common output for the optical filters to output the filtered multi-wavelength optical signal, which encodes the multi-bit search word and can be used as an optical search signal for searching an optical content-addressable memory (CAM).
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: October 11, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Thomas Van Vaerenbergh, Antoine Descos
  • Publication number: 20220224642
    Abstract: A method includes: receiving a packet in an optical domain, the packet including a data payload and a routing header indicative of a routing sequence for the data payload; reading a first bit of the routing header to make a routing decision for the data payload; stripping the first bit of the routing header in the optical domain to generate an updated routing header; and routing the data payload and the updated routing header based on the routing decision.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 14, 2022
    Inventors: MIR ASHKAN SEYEDI, TERREL L. MORRIS
  • Patent number: 11340410
    Abstract: An photonic circuit includes a substrate, a plurality of first light waveguides disposed on the substrate, the first light waveguides extending in a first direction, a plurality of second light waveguides disposed on the substrate and extending in a second direction intersecting the first direction, and a plurality of first micro-ring resonators disposed on the substrate. Each of the first light waveguides has an intersection with each of the second light waveguides. Each of the intersections is provided with a first micro-ring resonator of the first micro-ring resonators. Each first micro-ring resonator is configured to route signals of a respective wavelength from one of the light waveguides at the intersection to another light waveguide at the intersection.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: May 24, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Luca Ramini, Mir Ashkan Seyedi, Marco Fiorentino
  • Publication number: 20220138371
    Abstract: A method for simulating a photodetector behavior includes: receiving an input waveform for an photodetector; receiving an input optical power and a reverse bias voltage for the photodetector; searching for, in a lookup-table library, model parameters for a photodetector behavior model based on the input optical power and the reverse bias voltage; and outputting a second waveform from the photodetector behavior model, where the second waveform is indicative of an electrical response of the photodetector receiving the input waveform.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Jinsung Youn, Xiaoge Zeng, Mir Ashkan Seyedi
  • Publication number: 20220141557
    Abstract: A photonic node includes a first circuit disposed on a first substrate and a second circuit disposed on a second substrate different from the first substrate. The first circuit is configured to route light signals originated from the photonic node to local nodes of a local group in which the photonic node is a member. The second circuit is configured to route light signals received from a node of an external group in which the photonic node is not a member, to one of the local nodes.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: KEVIN B. LEIGH, LUCA RAMINI, MIR ASHKAN SEYEDI, STEVEN DEAN, MARCO FIORENTINO
  • Patent number: 11323787
    Abstract: A photonic node includes a first circuit disposed on a first substrate and a second circuit disposed on a second substrate different from the first substrate. The first circuit is configured to route light signals originated from the photonic node to local nodes of a local group in which the photonic node is a member. The second circuit is configured to route light signals received from a node of an external group in which the photonic node is not a member, to one of the local nodes.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: May 3, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Luca Ramini, Mir Ashkan Seyedi, Steven Dean, Marco Fiorentino
  • Publication number: 20220120983
    Abstract: An photonic circuit includes a substrate, a plurality of first light waveguides disposed on the substrate, the first light waveguides extending in a first direction, a plurality of second light waveguides disposed on the substrate and extending in a second direction intersecting the first direction, and a plurality of first micro-ring resonators disposed on the substrate. Each of the first light waveguides has an intersection with each of the second light waveguides. Each of the intersections is provided with a first micro-ring resonator of the first micro-ring resonators. Each first micro-ring resonator is configured to route signals of a respective wavelength from one of the light waveguides at the intersection to another light waveguide at the intersection.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 21, 2022
    Inventors: KEVIN B. LEIGH, LUCA RAMINI, MIR ASHKAN SEYEDI, MARCO FIORENTINO
  • Publication number: 20220069829
    Abstract: One embodiment provides an optical encoder. The optical encoder includes an optical comb source to generate a multi-wavelength optical signal; a number of optical filters sequentially coupled to the optical comb source, with a respective optical filter being tunable to pass or block a particular wavelength of the multi-wavelength optical signal based on a corresponding bit value of a multi-bit search word; and a common output for the optical filters to output the filtered multi-wavelength optical signal, which encodes the multi-bit search word and can be used as an optical search signal for searching an optical content-addressable memory (CAM).
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Mir Ashkan Seyedi, Thomas Van Vaerenbergh, Antoine Descos
  • Patent number: 11233577
    Abstract: Examples include systems and methods for communicating temperature variation information of a transmitter resonator to a receiver resonator in an optical communication system. Some examples provide a transceiver module that includes a transmitter resonator to transmit optical signals emitted from a light source, a photodetector coupled to the transmitter resonator to detect the optical signals transmitted by the transmitter resonator and generate a photocurrent, and a controller to receive the photocurrent from the photodetector, determine temperature variation information of the transmitter resonator from the photocurrent, and encode the temperature variation information in an outgoing data stream transmitted via the transmitter resonator.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 25, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Mir Ashkan Seyedi
  • Publication number: 20210373241
    Abstract: Embodiments of the present disclosure provide etch-variation tolerant optical coupling components and processes for making the same. An etch-variation tolerant geometry is determined for at least one waveguide of an optical coupling component (e.g., a directional coupler). The geometry is optimized such that each fabricated instance of an optical component design with the etch-variation tolerant geometry has substantially the same coupling ratio at any etch depth between a shallow etch depth and a deep etch depth.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 2, 2021
    Inventors: PENG SUN, MIR ASHKAN SEYEDI, THOMAS VAN VAERENBERGH, MARCO FIORENTINO
  • Publication number: 20210376936
    Abstract: An optical transceiver module includes a light source configured to emit light, a transmitter resonator configured to transmit light signals from the light source, a temperature sensor configured to detect temperatures of the transmitter resonator, and a controller circuit. The controller circuit is configured to obtain a first temperature variation value based on the detected temperatures, and encode the first temperature variation value via the transmitter resonator in an outgoing data stream.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 2, 2021
    Inventor: MIR ASHKAN SEYEDI
  • Publication number: 20210368247
    Abstract: Systems and methods are provided for zero-added latency communication between nodes over an optical fabric. In various embodiments, a photonic interface system is provided that comprises a plurality of optical routing elements and optical signal sources. Each node within a cluster is assigned an intra-cluster wavelength and an inter-cluster wavelength. All the nodes in a cluster are directly connected and each node in a cluster is directly connected to one node in each of the plurality of clusters. When an optical signal from a different cluster is received at a node serving as the cluster interface, the photonics interface system allows all wavelength signals other than the node's assigned wavelength to pass through and couple those signals to an intra-cluster transmission signal. Zero latency is added in rerouting the data through an intermediate node.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: MIR ASHKAN SEYEDI, LUCA RAMINI
  • Publication number: 20210367699
    Abstract: A fiber loop includes a plurality of processors coupled to each other and a controller coupled to each of the plurality of processors. The controller is configured to: assign to each of the plurality of processors a number of wavelengths for interconnect communications between the plurality of processors; receive, from a first processor of the plurality of processors, a request for one or more additional wavelengths; determine whether an interconnect bandwidth utilization on the fiber loop is less than a threshold; and in response to determining that the interconnect bandwidth utilization on the fiber loop is less than the threshold, reassign, to the first processor, one or more wavelengths that are assigned to a second processor of the plurality of processors.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Frank R. Dropps, Mir Ashkan Seyedi
  • Patent number: 11184103
    Abstract: A fiber loop includes a plurality of processors coupled to each other and a controller coupled to each of the plurality of processors. The controller is configured to: assign to each of the plurality of processors a number of wavelengths for interconnect communications between the plurality of processors; receive, from a first processor of the plurality of processors, a request for one or more additional wavelengths; determine whether an interconnect bandwidth utilization on the fiber loop is less than a threshold; and in response to determining that the interconnect bandwidth utilization on the fiber loop is less than the threshold, reassign, to the first processor, one or more wavelengths that are assigned to a second processor of the plurality of processors.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 23, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Frank R. Dropps, Mir Ashkan Seyedi
  • Publication number: 20210359760
    Abstract: An optical transceiver module includes an optical transceiver and a controller. The optical transceiver has a ring filter configured to transmit optical signals from or receive optical signals for the optical transceiver module. The controller is configured to: detect a carrier frequency at the optical transceiver; detect a data signal frequency of data at the optical transceiver; determine a bit error rate of the data; and in response to determining that the bit error rate of the data is greater than a threshold, periodically vary a central wavelength of the ring filter at a frequency at least three orders slower than the data signal frequency.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 18, 2021
    Inventors: Mir Ashkan Seyedi, Terrel Morris
  • Patent number: 11177219
    Abstract: Examples include a photonic device including a photonic integrated circuit (PIC), an optical transceiver (OTRx) front-end circuitry integrated with the PIC, an electronic integrated circuit (EIC) and an interposer. The PIC and the EIC are disposed on the interposer. The EIC is electrically interconnected to the OTRx front-end circuitry in the PIC. Some examples include a method of fabricating a photonic device.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: November 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Jinsung Youn, Mir Ashkan Seyedi
  • Patent number: 11114409
    Abstract: Examples herein relate to optoelectronic assemblies. In particular, implementations herein relate to an optoelectronic assembly formed via a chip on wafer on substrate (CoWoS) process. The optoelectronic assembly includes a substrate, an interposer, and an electronic integrated circuit (EIC). Each of the substrate, interposer, and EIC includes opposing first and second sides. The EIC is flip-chip assembled to the first side of the interposer, and the interposer with the EIC assembled thereto is flip-chip assembled to the first side of the substrate. An overmold layer extends over the first side of the interposer and encapsulates the EIC. The overmold layer includes a cavity such that a region of the first side of the interposer is exposed. An optical component is positioned within the cavity and coupled to the first side of the interposer.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: September 7, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino
  • Publication number: 20210242168
    Abstract: Examples herein relate to optoelectronic assemblies. In particular, implementations herein relate to an optoelectronic assembly formed via a chip on wafer on substrate (CoWoS) process. The optoelectronic assembly includes a substrate, an interposer, and an electronic integrated circuit (EIC). Each of the substrate, interposer, and EIC includes opposing first and second sides. The EIC is flip-chip assembled to the first side of the interposer, and the interposer with the EIC assembled thereto is flip-chip assembled to the first side of the substrate. An overmold layer extends over the first side of the interposer and encapsulates the EIC. The overmold layer includes a cavity such that a region of the first side of the interposer is exposed. An optical component is positioned within the cavity and coupled to the first side of the interposer.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino
  • Patent number: 11036014
    Abstract: Improved systems and methods are provided to implement coherent communication. The system includes an interposer to route the components of an integrated photonic circuit. The interposer provides an interface to couple the components of the integrated photonic circuit including an optical source, modulator, coherent transmitter, coherent receiver, and interconnects therebetween. The optical source can be a grating-coupled surface-emitting laser (GCSEL). The GCSEL splits an optical signal into two symmetrical optical signals that are directed by a waveguide to a coherent transmitter and/or a coherent receiver of the integrated photonic circuit. Coherent communication is maintained and the need for a second laser in the coherent receiver is avoided through the structure of the GCSEL granting dual functional to the optical source.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 15, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Geza Kurczveil