Patents by Inventor Mir Ashkan SEYEDI

Mir Ashkan SEYEDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10656337
    Abstract: An example system for multi-wavelength optical signal splitting is disclosed. The example disclosed herein comprises a first splitter, a second splitter, and a modulator. The system receives a multi-wavelength optical signal and an electrical signal, wherein the multi-wavelength optical signal comprises a plurality of optical wavelengths and has a power level. The first splitter is to split the plurality of optical wavelengths into a plurality of optical wavelength groups. The second splitter is to split the multi-wavelength optical signal or the plurality of optical wavelength groups into a plurality of lower power signal groups. The modulator is to encode the electrical signal into the plurality of optical wavelength groups, the plurality of lower power signal groups, or a combination thereof.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: May 19, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Raymond G. Beausoleil, Di Liang, Marco Fiorentino, Geza Kurczveil, Mir Ashkan Seyedi, Zhihong Huang
  • Publication number: 20200145100
    Abstract: Examples described herein relate to reducing a magnitude of a supply voltage for a circuit element of an optical transmitter device. In some such examples, the circuit element is a driving element that is to receive a first electrical data signal and to provide a second electrical data signal to an optical element that is to provide an optical data signal. A testing element is to compare the optical data signal to the first electrical data signal to determine whether the optical transmitter device meets a performance threshold. When the device meets the performance threshold, a regulating element is to reduce a magnitude of the supply voltage of the driving element.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 7, 2020
    Inventors: Tsung Ching Huang, Rui Wu, Nan Qi, Mir Ashkan Seyedi, Marco Fiorentino
  • Publication number: 20200116940
    Abstract: In the examples provided herein, a system has a first racetrack resonant waveguide structure, positioned to enable an input light signal to couple from a first waveguide; and a second racetrack resonant waveguide structure, positioned to enable the input light signal to couple between the first racetrack resonant waveguide structure and the second racetrack resonant waveguide structure, and further positioned to enable an output light signal to couple from the second racetrack resonant waveguide structure to a second waveguide. The system also has a primary heating unit, positioned to heat a primary region including a first portion of the first racetrack resonant waveguide structure and a first portion of the second racetrack resonant waveguide structure, to change a central frequency and a passband width for the system.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Mir Ashkan Seyedi, Chin-Hui Chen
  • Publication number: 20200088947
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20200026011
    Abstract: A photonic integrated circuit package includes two arrays or sets of integrated comb laser modules that are bonded to a silicon interposer. Each comb laser of an array has a common or overlapping spectral range, with each laser in the array being optically coupled to a local optical bus. The effective spectral range of the lasers in each array are different, or distinct, as to each array. An optical coupler is disposed within the silicon interposer and is optically coupled to each of the local optical buses. An ASIC (application specific integrated circuit) is bonded to the silicon interposer and provides control and operation of the comb laser modules.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino, Geza Kurczveil, Raymond G. Raymond
  • Patent number: 10514508
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 24, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Patent number: 10509173
    Abstract: In the examples provided herein, a system has a first racetrack resonant waveguide structure, positioned to enable an input light signal to couple from a first waveguide; and a second racetrack resonant waveguide structure, positioned to enable the input light signal to couple between the first racetrack resonant waveguide structure and the second racetrack resonant waveguide structure, and further positioned to enable an output light signal to couple from the second racetrack resonant waveguide structure to a second waveguide. The system also has a primary heating unit, positioned to heat a primary region including a first portion of the first racetrack resonant waveguide structure and a first portion of the second racetrack resonant waveguide structure, to change a central frequency and a passband width for the system.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: December 17, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Chin-Hui Chen
  • Patent number: 10502900
    Abstract: A photonic integrated circuit (PIC) includes a semiconductor substrate with a main bus waveguide disposed within the substrate. Two or more ring lasers are disposed within the substrate and are optically coupled to the main bus waveguide. The ring lasers have a wavelength control mechanism allowing change of a lasers emitted wavelength. A wavelength selective filter is optically coupled to the bus waveguide. A control circuit is electronically coupled to each wavelength control mechanism, and the wavelength selective filter. The control circuit in conjunction with the selective filter allows monitoring of a ring laser's wavelength on the main bus waveguide. Based on a determined wavelength, the control circuit may change a ring laser wavelength to a desired wavelength to achieve a desired wavelength spacing for each of the ring lasers. The PIC may be integrated as a coarse wave-length division multiplexing (CWDM) transmit module.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: December 10, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Di Liang
  • Publication number: 20190331858
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20190317286
    Abstract: A photonic integrated circuit package includes two arrays or sets of integrated comb laser modules that are bonded to a silicon interposer. Each comb laser of an array has a common or overlapping spectral range, with each laser in the array being optically coupled to a local optical bus. The effective spectral range of the lasers in each array are different, or distinct, as to each array. An optical coupler is disposed within the silicon interposer and is optically coupled to each of the local optical buses. An ASIC (application specific integrated circuit) is bonded to the silicon interposer and provides control and operation of the comb laser modules.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino, Geza Kurczveil, Raymond G. Beausoleil
  • Publication number: 20190310422
    Abstract: A photonic integrated circuit (PIC) includes a semiconductor substrate with a main bus waveguide disposed within the substrate. Two or more ring lasers are disposed within the substrate and are optically coupled to the main bus waveguide. The ring lasers have a wavelength control mechanism allowing change of a lasers emitted wavelength. A wavelength selective filter is optically coupled to the bus waveguide. A control circuit is electronically coupled to each wavelength control mechanism, and the wavelength selective filter. The control circuit in conjunction with the selective filter allows monitoring of a ring laser's wavelength on the main bus waveguide. Based on a determined wavelength, the control circuit may change a ring laser wavelength to a desired wavelength to achieve a desired wavelength spacing for each of the ring lasers. The PIC may be integrated as a coarse wave-length division multiplexing (CWDM) transmit module.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Mir Ashkan Seyedi, Di Liang
  • Patent number: 10429601
    Abstract: A photonic integrated circuit package includes two arrays or sets of integrated comb laser modules that are bonded to a silicon interposer. Each comb laser of an array has a common or overlapping spectral range, with each laser in the array being optically coupled to a local optical bus. The effective spectral range of the lasers in each array are different, or distinct, as to each array. An optical coupler is disposed within the silicon interposer and is optically coupled to each of the local optical buses. An ASIC (application specific integrated circuit) is bonded to the silicon interposer and provides control and operation of the comb laser modules.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: October 1, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino, Geza Kurczveil, Raymond G. Beausoleil
  • Patent number: 10429676
    Abstract: In one example, a device includes a bus waveguide to carry a light of a carrier wavelength, a first ring waveguide with a first modulator, a first heater to adjust a resonance wavelength of the first ring waveguide, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate the light of the carrier wavelength to impart one of at least four optical power levels to the light. In another example, a device includes, a bus waveguide, a first ring waveguide with a first modulator, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate a light of a carrier wavelength to impart one of at least four optical power levels to the light.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 1, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Chin-Hui Chen
  • Patent number: 10365433
    Abstract: An apparatus includes an optical rib waveguide on a substrate, the optical rib waveguide further includes: a slab layer of silicon, a shallow rib of silicon in height that tapers laterally along a taper region, a deep rib of silicon that meets the shallow rib along the taper region of the shallow rib, and wherein the deep rib and the shallow rib have a same width, and wherein the shallow rib has a greater height than the deep rib, a core of silicon that tapers laterally in a range of 50-90% and extends on top of the deep rib and the shallow rib, and a cladding layer of silicon oxide that covers the slab, core, deep rib, and shallow rib.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: July 30, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Chin-Hui Chen
  • Publication number: 20190170943
    Abstract: Examples described herein relate to an optical switching device wherein a racetrack resonant structure is positioned to determine a frequency passband by coupling. In some examples, a first waveguide receives an input light signal. A second waveguide is positioned to enable the input light signal to couple between the first waveguide and the second waveguide through a first coupling gap. The racetrack resonant structure is positioned adjacent to the first coupling gap to enable the input light signal to couple between one of the first waveguide and the second waveguide and the racetrack resonant structure through a second coupling gap. Thus, the racetrack resonant structure is to determine the frequency passband such that a first portion of the input light signal that coincides with the frequency passband is output by the first waveguide, and a second portion of the input light signal that does not coincide with the frequency passband is output by the second waveguide.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: David Kielpinski, Shuren Hu, Mir Ashkan Seyedi, Thomas Van Vaerenbergh, Gabriel Joel Mendoza, Jason Pelc
  • Patent number: 10288811
    Abstract: Examples described herein relate to an optical switching device wherein a racetrack resonant structure is positioned to determine a frequency passband by coupling. In some examples, a first waveguide receives an input light signal. A second waveguide is positioned to enable the input light signal to couple between the first waveguide and the second waveguide through a first coupling gap. The racetrack resonant structure is positioned adjacent to the first coupling gap to enable the input light signal to couple between one of the first waveguide and the second waveguide and the racetrack resonant structure through a second coupling gap. Thus, the racetrack resonant structure is to determine the frequency passband such that a first portion of the input light signal that coincides with the frequency passband is output by the first waveguide, and a second portion of the input light signal that does not coincide with the frequency passband is output by the second waveguide.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: May 14, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: David Kielpinski, Shuren Hu, Mir Ashkan Seyedi, Thomas Van Vaerenbergh, Gabriel Joel Mendoza, Jason Pelc
  • Publication number: 20190094466
    Abstract: An example system for multi-wavelength optical signal splitting is disclosed. The example disclosed herein comprises a first splitter, a second splitter, and a modulator. The system receives a multi-wavelength optical signal and an electrical signal, wherein the multi-wavelength optical signal comprises a plurality of optical wavelengths and has a power level. The first splitter is to split the plurality of optical wavelengths into a plurality of optical wavelength groups. The second splitter is to split the multi-wavelength optical signal or the plurality of optical wavelength groups into a plurality of lower power signal groups. The modulator is to encode the electrical signal into the plurality of optical wavelength groups, the plurality of lower power signal groups, or a combination thereof.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Raymond G. Beausoleil, Di Liang, Marco Fiorentino, Geza Kurczveil, Mir Ashkan Seyedi, Zhihong Huang
  • Publication number: 20190064443
    Abstract: In the examples provided herein, a system has a first racetrack resonant waveguide structure, positioned to enable an input light signal to couple from a first waveguide; and a second racetrack resonant waveguide structure, positioned to enable the input light signal to couple between the first racetrack resonant waveguide structure and the second racetrack resonant waveguide structure, and further positioned to enable an output light signal to couple from the second racetrack resonant waveguide structure to a second waveguide. The system also has a primary heating unit, positioned to heat a primary region including a first portion of the first racetrack resonant waveguide structure and a first portion of the second racetrack resonant waveguide structure, to change a central frequency and a passband width for the system.
    Type: Application
    Filed: September 22, 2015
    Publication date: February 28, 2019
    Inventors: Mir Ashkan Seyedi, Chin-Hui Chen
  • Publication number: 20180267240
    Abstract: An apparatus includes an optical rib waveguide on a substrate, the optical rib waveguide further includes: a slab layer of silicon, a shallow rib of silicon in height that tapers laterally along a taper region, a deep rib of silicon that meets the shallow rib along the taper region of the shallow rib, and wherein the deep rib and the shallow rib have a same width, and wherein the shallow rib has a greater height than the deep rib, a core of silicon that tapers laterally in a range of 50-90% and extends on top of the deep rib and the shallow rib, and a cladding layer of silicon oxide that covers the slab, core, deep rib, and shallow rib.
    Type: Application
    Filed: September 4, 2015
    Publication date: September 20, 2018
    Inventors: Mir Ashkan SEYEDI, Chin-Hui CHEN
  • Publication number: 20180210241
    Abstract: In one example, a device includes a bus waveguide to carry a light of a carrier wavelength, a first ring waveguide with a first modulator, a first heater to adjust a resonance wavelength of the first ring waveguide, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate the light of the carrier wavelength to impart one of at least four optical power levels to the light. In another example, a device includes, a bus waveguide, a first ring waveguide with a first modulator, and a second ring waveguide with a second modulator. The first ring waveguide and the second ring waveguide are coupled to the bus waveguide and are to modulate a light of a carrier wavelength to impart one of at least four optical power levels to the light.
    Type: Application
    Filed: July 23, 2015
    Publication date: July 26, 2018
    Inventors: Mir Ashkan SEYEDI, Chin-Hui CHEN