Patents by Inventor Mircea Despa

Mircea Despa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080103059
    Abstract: A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
    Type: Application
    Filed: December 13, 2007
    Publication date: May 1, 2008
    Inventors: Brian Webb, Jinlin Peng, Michael Brady, Mircea Despa, Keith Horn, Joydeep Lahiri, David Root, James Stamatoff
  • Patent number: 7332328
    Abstract: A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: February 19, 2008
    Assignee: Corning Incorporated
    Inventors: Brian L. Webb, Jinlin Peng, Michael D. Brady, Mircea Despa, Keith A. Horn, Joydeep Lahiri, David M. Root, James B. Stamatoff, Po Ki Yuen
  • Patent number: 6985664
    Abstract: A grating-coupled waveguide (GCW) and a method are described herein that can be used to detect the presence of a biological substance (e.g., cell, drug, chemical compound) in a sensing region of the GCW. The GCW includes a substrate, a diffraction grating and a waveguide film that has a higher index of refraction than the substrate which has an index of refraction?1.5. The relatively low-index substrate effectively increases the sensitivity of the GCW by causing the waveguide mode to shift towards a biological substance located in a sensing region above the waveguide film, thereby increasing the field strength of the mode's evanescent tail in this region. In one embodiment, an array of the GCWs are incorporated within the wells of a microplate.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: January 10, 2006
    Assignee: Corning Incorporated
    Inventors: Stephen J. Caracci, Mircea Despa, Eric J. Mozdy, Mark D. Salik
  • Publication number: 20050269068
    Abstract: An extremely high efficiency, cross flow, fluid-fluid, micro heat exchanger and novel method of fabrication using electrode-less deposition is disclosed. To concurrently achieve the goals of high mass flow rate, low pressure drop, and high heat transfer rates, the heat exchanger comprises numerous parallel, but relatively short microchannels. Typical channel heights are from a few hundred micrometers to about 2000 micrometers, and typical channel widths are from around 50 micrometers to a few hundred micrometers. The micro heat exchangers offer substantial advantages over conventional, larger heat exchangers in performance, weight, size, and cost. The heat exchangers are especially useful for enhancing gas-side heat exchange. The use of microchannels in a cross-flow micro-heat exchanger decreases the thermal diffusion lengths substantially, allowing substantially greater heat transfer per unit volume or per unit mass than has been achieved with prior heat exchangers.
    Type: Application
    Filed: April 20, 2005
    Publication date: December 8, 2005
    Inventors: Kevin Kelly, Chad Harris, Mircea Despa
  • Publication number: 20050025421
    Abstract: A grating-coupled waveguide (GCW) and a method are described herein that can be used to detect the presence of a biological substance (e.g., cell, drug, chemical compound) in a sensing region of the GCW. The GCW includes a substrate, a diffraction grating and a waveguide film that has a higher index of refraction than the substrate which has an index of refraction ?1.5. The relatively low-index substrate effectively increases the sensitivity of the GCW by causing the waveguide mode to shift towards a biological substance located in a sensing region above the waveguide film, thereby increasing the field strength of the mode's evanescent tail in this region. In one embodiment, an array of the GCWs are incorporated within the wells of a microplate.
    Type: Application
    Filed: August 1, 2003
    Publication date: February 3, 2005
    Inventors: Stephen Caracci, Mircea Despa, Eric Mozdy, Mark Salik
  • Publication number: 20030124029
    Abstract: A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
    Type: Application
    Filed: September 6, 2002
    Publication date: July 3, 2003
    Inventors: Brian L. Webb, Jinlin Peng, Michael D. Brady, Mircea Despa, Keith A. Horn, Joydeep Lahiri, David M. Root, James B. Stamatoff