Patents by Inventor Mitsuru Soma

Mitsuru Soma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7719081
    Abstract: In a semiconductor device of the present invention, an epitaxial layer is formed on a P type single crystal silicon substrate. Isolation regions are formed in the epitaxial layer, and are divided into a plurality of element formation regions. An NPN transistor is formed in one of the element formation regions. An N type diffusion layer is formed between a P type isolation region and a P type diffusion layer which is used as a base region of the NPN transistor. This structure makes the base region and the isolation region tend not to be short-circuited. Hence, the breakdown voltage characteristics of the NPN transistor can be improved.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: May 18, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi
  • Patent number: 7560797
    Abstract: In a semiconductor device of the present invention, two epitaxial layers are formed on a P type single crystal silicon substrate. One of the epitaxial layers has an impurity concentration higher than that of the other epitaxial layer. The epitaxial layers are divided into a plurality of element formation regions by isolation regions. In one of the element formation regions, an NPN transistor is formed. Moreover, between a P type diffusion layer, which is used as a base region of the NPN transistor, and a P type isolation region, an N type diffusion layer is formed. Use of this structure makes it hard for a short-circuit to occur between the base region and the isolation region. Thus, the breakdown voltage characteristics of the NPN transistor can be improved.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: July 14, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi
  • Publication number: 20080191315
    Abstract: In a semiconductor device according to the present invention, two epitaxial layers are formed on a P type substrate. In the substrate and the epitaxial layers, isolation regions are formed to divide the substrate and the epitaxial layers into a plurality of islands. Each of the isolation regions is formed by connecting first and second P type buried layers with a P type diffusion layer. By disposing the second P type buried layer between the first P type buried layer and the P type diffusion layer, a lateral diffusion width of the first P type buried layer is reduced. By use of this structure, a formation region of the isolation region is reduced in size.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 14, 2008
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Yoshimasa Amatatsu
  • Publication number: 20080150083
    Abstract: In the substrate and the epitaxial layer, isolation regions are formed to divide the substrate and the epitaxial layer into a plurality of element formation regions. Each of the isolation regions is formed by connecting first and second P type buried diffusion layers with a P type diffusion layer. By disposing the second P type buried diffusion layer between the first P type buried diffusion layer and the P type diffusion layer, a lateral diffusion width of the first P type buried diffusion layer is reduced. This structure allows a formation region of the isolation region to be reduced in size.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 26, 2008
    Applicants: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Yoshimasa Amatatsu
  • Publication number: 20070158754
    Abstract: In a semiconductor device of the present invention, two epitaxial layers are formed on a P type single crystal silicon substrate. In the epitaxial layers, P type buried diffusion layers and P type diffusion layers are formed, which form isolation regions. In this event, the P type buried diffusion layers are formed by being expanded from a surface of a first epitaxial layer. By use of this structure, lateral expansion widths of the P type buried diffusion layers are reduced. Thus, the device size of an NPN transistor can be reduced.
    Type: Application
    Filed: December 7, 2006
    Publication date: July 12, 2007
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi
  • Publication number: 20070145520
    Abstract: In a semiconductor device of the present invention, two epitaxial layers are formed on a P type single crystal silicon substrate. One of the epitaxial layers has an impurity concentration higher than that of the other epitaxial layer. The epitaxial layers are divided into a plurality of element formation regions by isolation regions. In one of the element formation regions, an NPN transistor is formed. Moreover, between a P type diffusion layer, which is used as a base region of the NPN transistor, and a P type isolation region, an N type diffusion layer is formed. Use of this structure makes it hard for a short-circuit to occur between the base region and the isolation region. Thus, the breakdown voltage characteristics of the NPN transistor can be improved.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 28, 2007
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi
  • Publication number: 20070145530
    Abstract: In a semiconductor device of the present invention, an epitaxial layer is formed on a P type single crystal silicon substrate. Isolation regions are formed in the epitaxial layer, and are divided into a plurality of element formation regions. An NPN transistor is formed in one of the element formation regions. An N type diffusion layer is formed between a P type isolation region and a P type diffusion layer which is used as a base region of the NPN transistor. This structure makes the base region and the isolation region tend not to be short-circuited. Hence, the breakdown voltage characteristics of the NPN transistor can be improved.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 28, 2007
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Minoru Akaishi