Patents by Inventor Mohamad A. Ayoub

Mohamad A. Ayoub has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160020071
    Abstract: Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation/recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
    Type: Application
    Filed: April 23, 2015
    Publication date: January 21, 2016
    Inventors: Abdul Aziz KHAJA, Mohamad AYOUB, Jay D. PINSON, II, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20160017494
    Abstract: Embodiments of the present invention relate to apparatus for improving a plasma profile during plasma processing of a substrate. According to embodiments, the apparatus includes a tuning ring electrically coupled to a variable capacitor. The capacitance is controlled to control the RF and resulting plasma coupling to the tuning ring. The plasma profile and the resulting deposition film thickness across the substrate are correspondingly controlled by adjusting the capacitance and impedance at the tuning ring.
    Type: Application
    Filed: February 12, 2014
    Publication date: January 21, 2016
    Inventors: Mohamad A. AYOUB, Jian J. CHEN
  • Publication number: 20160013022
    Abstract: Embodiments of the present invention relate to apparatus for enhancing deposition rate and improving a plasma profile during plasma processing of a substrate. According to embodiments, the apparatus includes a tuning electrode disposed in a substrate support pedestal and electrically coupled to a variable capacitor. The capacitance is controlled to control the RF and resulting plasma coupling to the tuning electrode. The plasma profile and the resulting deposition rate and deposited film thickness across the substrate are correspondingly controlled by adjusting the capacitance and impedance at the tuning electrode.
    Type: Application
    Filed: February 12, 2014
    Publication date: January 14, 2016
    Inventors: MOHAMAD A. AYOUB, JIAN J. CHEN, AMIT K. BANSAL
  • Patent number: 9157730
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20150226540
    Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 23, 2013
    Publication date: August 13, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Patent number: 8884524
    Abstract: Embodiments of the present invention provide an RF conducting rod comprising a hollow portion. Particularly, the RF conducting rod comprises an elongated hollow body having a sidewall enclosing an inner volume, a first solid connector extending from a first end of the elongated hollow body, and a second solid connector extending from a second end of the elongated hollow body. Each of the elongated hollow body, the first solid connector and the second solid connector is formed from an electrically conductive material.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jianhua Zhou, Dale R. Du Bois, Mohamad A. Ayoub, Juan Carlos Rocha-Alvarez
  • Publication number: 20140302256
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 9, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jian J. CHEN, Mohamad A. AYOUB, Juan Carlos ROCHA-ALVAREZ, Zheng John YE, Ramprakash SANKARAKRISHNAN, Jianhua ZHOU
  • Publication number: 20140290576
    Abstract: Embodiments of the present invention relate to apparatus for improving uniformity and film stress of films deposited during plasma process of a substrate. According to embodiments, the apparatus includes a tuning electrode and/or a tuning ring electrically coupled to a variable capacitor for tuning high frequency RF impedance of the electrode and a low frequency RF termination to ground. The plasma profile and resulting film thickness can be controlled by adjusting the capacitance of the variable capacitor and the resulting impedance of the tuning electrode. The film stress of the film deposited on the substrate can be controlled, i.e., increased, by terminating the low frequency RF during processing.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 2, 2014
    Inventors: Jian J. Chen, Juan Carlos Rocha-Alvarez, Mohamad A. Ayoub
  • Patent number: 8778813
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Mark Fodor, Jianhua Zhou, Amit Bansal, Mohamad A. Ayoub, Shahid Shaikh, Patrick Reilly, Deenesh Padhi, Thomas Nowak
  • Publication number: 20140118751
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 17, 2013
    Publication date: May 1, 2014
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20140087489
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Juan Carlos ROCHA-ALVAREZ, Amit Kumar BANSAL, Ganesh BALASUBRAMANIAN, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Mohamad A. AYOUB, Jian J. CHEN
  • Patent number: 8587321
    Abstract: A system and method for the detection of plasma excursions, such as arcs, micro-arcs, or other plasma instability, during plasma processing by directly monitoring RF current just prior to reaching an RF power electrode of a plasma processing chamber is provided. The monitored RF current may be converted to an RF voltage and then passed through a succession of analog filters and amplifiers to provide a plasma excursion signal. The plasma excursion signal is compared to a preset value, and at points where the plasma excursion signal exceeds the preset value, an alarm signal is generated. The alarm signal is then fed back into a system controller so that an operator can be alerted and/or the processing system can be shut down. In one embodiment, the RF current amplified and converted to a digital signal for digital filtering and processing. In certain embodiments, multiple processing regions can be monitored by a single detection control unit.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jian J. Chen, Mohamad A. Ayoub
  • Patent number: 8502689
    Abstract: The present invention provides a system and method for the detection of plasma excursions, such as arcs, micro-arcs, or other plasma instability, during plasma processing by directly monitoring direct current (DC) bias voltage on an RF power electrode of a plasma processing chamber. The monitored DC bias voltage is then passed through a succession of analog filters and amplifiers to provide a plasma excursion signal. The plasma excursion signal is compared to a preset value, and at points where the plasma excursion signal exceeds the preset value, an alarm signal is generated. The alarm signal is then fed back into a system controller so that an operator can be alerted and/or the processing system can be shut down. In certain embodiments, multiple processing regions can be monitored by a single detection control unit.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jian J. Chen, Mohamad Ayoub
  • Publication number: 20130126206
    Abstract: Embodiments of the present invention provide an RF conducting rod comprising a hollow portion. Particularly, the RF conducting rod comprises an elongated hollow body having a sidewall enclosing an inner volume, a first solid connector extending from a first end of the elongated hollow body, and a second solid connector extending from a second end of the elongated hollow body. Each of the elongated hollow body, the first solid connector and the second solid connector is formed from an electrically conductive material.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jianhua Zhou, Dale R. Du Bois, Mohamad A. Ayoub, Juan Carlos Rocha-Alvarez
  • Publication number: 20120211164
    Abstract: Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 23, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Ashish Shah, Dale R. DuBois, Ganesh Balasubramanian, Mark A. Fodor, Eui Kyoon Kim, Chiu Chan, Karthik Janakiraman, Thomas Nowak, Joseph C. Werner, Visweswaren Sivaramakrishnan, Mohamad Ayoub, Amir Al-Bayati, Jianhua Zhou
  • Publication number: 20120205046
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad A. Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 8197636
    Abstract: Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 12, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Ashish Shah, Dale R. DuBois, Ganesh Balasubramanian, Mark A. Fodor, Eui Kyoon Kim, Chiu Chan, Karthik Janakiraman, Thomas Nowak, Joseph C. Werner, Visweswaren Sivaramakrishnan, Mohamad Ayoub, Amir Al-Bayati, Jianhua Zhou
  • Publication number: 20120074951
    Abstract: A system and method for the detection of plasma excursions, such as arcs, micro-arcs, or other plasma instability, during plasma processing by directly monitoring RF current just prior to reaching an RF power electrode of a plasma processing chamber is provided. The monitored RF current may be converted to an RF voltage and then passed through a succession of analog filters and amplifiers to provide a plasma excursion signal. The plasma excursion signal is compared to a preset value, and at points where the plasma excursion signal exceeds the preset value, an alarm signal is generated. The alarm signal is then fed back into a system controller so that an operator can be alerted and/or the processing system can be shut down. In one embodiment, the RF current amplified and converted to a digital signal for digital filtering and processing. In certain embodiments, multiple processing regions can be monitored by a single detection control unit.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jian J. Chen, Mohamad A. Ayoub
  • Publication number: 20120075108
    Abstract: The present invention provides a system and method for the detection of plasma excursions, such as arcs, micro-arcs, or other plasma instability, during plasma processing by directly monitoring direct current (DC) bias voltage on an RF power electrode of a plasma processing chamber. The monitored DC bias voltage is then passed through a succession of analog filters and amplifiers to provide a plasma excursion signal. The plasma excursion signal is compared to a preset value, and at points where the plasma excursion signal exceeds the preset value, an alarm signal is generated. The alarm signal is then fed back into a system controller so that an operator can be alerted and/or the processing system can be shut down. In certain embodiments, multiple processing regions can be monitored by a single detection control unit.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jian J. Chen, Mohamad Ayoub
  • Publication number: 20110294303
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
    Type: Application
    Filed: May 6, 2011
    Publication date: December 1, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Mark Fodor, Jianhua Zhou, Amit Bansal, Mohamad A. Ayoub, Shahid Shaikh, Patrick Reilly, Deenesh Padhi, Thomas Nowak