Patents by Inventor Mohammed N. Islam

Mohammed N. Islam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170067820
    Abstract: A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Inventor: Mohammed N. ISLAM
  • Publication number: 20160374560
    Abstract: A measurement apparatus includes sensors adapted to be coupled to tissue containing blood and configured to generate signals associated with physiological parameters. The device is configured to communicate with a software application through a base device. The software application is configured to operate on a control system. The control system is capable of receiving physiological parameter signals. The control system includes a touch-screen, a proximity sensor, circuitry for obtaining movement information from a positioning sensor, a mechanical system having actuators, and a wireless transmitter to transmit data to a host. The software application is operable to generate the physiological information based on the signals from the sensors. The control system is further configured to receive voice input signals and manually entered input signals. The host is configured to generate status information from the data and includes a memory storage device and a communication device.
    Type: Application
    Filed: September 7, 2016
    Publication date: December 29, 2016
    Inventor: Mohammed N. ISLAM
  • Publication number: 20160363482
    Abstract: A white light spectroscopy system includes a super continuum light source having an input light source including semiconductor diodes to generate an input beam having a wavelength shorter than 2.5 microns. The light source includes a cladding-pumped fiber optical amplifier to receive the input beam, and a photonic crystal fiber to receive the amplified optical beam to broaden the spectral width to 100 nm or more forming an output beam in the visible wavelength range. The output beam is pulsed with a repetition rate of 1 Megahertz or higher. The system also includes a lens and/or mirror to receive the output beam, to send the output beam to a scanning stage, and to deliver the received output beam to a sample. A detection system includes dispersive optics and narrow band filters followed by one or more detectors to permit approximately simultaneous measurement of at least two wavelengths from the sample.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventor: Mohammed N. ISLAM
  • Patent number: 9500635
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 22, 2016
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9500634
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 22, 2016
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9494567
    Abstract: Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 15, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20160327476
    Abstract: A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventor: Mohammed N. ISLAM
  • Patent number: 9476769
    Abstract: An optical system includes a tunable semiconductor light emitter that generates an input beam having a wavelength shorter than about 2.5 microns, an optical isolator coupled to the emitter and configured to block reflected light into the emitter, an optical amplifier receiving the input beam and outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming an output beam. A subsystem includes lenses or mirrors that deliver the output beam to a sample. The subsystem may include an Optical Coherence Tomography (OCT) apparatus having a sample arm and a reference arm, the output beam having a temporal duration greater than approximately 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity less than approximately 50 MW/cm2. The system may also include a light detection system collecting any of the output beam that reflects or transmits from the sample.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: October 25, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9456751
    Abstract: A diagnostic system includes a sensor configured to generate signals associated with physiological parameters, a proximity sensor, a positioning sensor, and a software application configured to operate on a control system adapted to receive and process physiological information including a touch-screen, a mechanical system having actuators, and a wireless transmitter to transmit data over a wireless link to a host. The software application is operable to generate the physiological information using the signals from the sensor. The control system receives voice and manually entered input signals. The host generates status information from the date and includes a memory storage device for recording the status information and a communication device for communicating the status information over a communication link to one or more display output devices located remotely from the host.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: October 4, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9456750
    Abstract: A diagnostic system includes sensors with at least one being a diagnostic device comprising one or more solid state light sources used in a measurement. A software application capable of generating physiological information based on the sensors is operable on a control system adapted to receive, store and process the physiological information. The control system includes a touch-screen, circuitry for obtaining position information from a location sensor, and a wireless transceiver to transmit wireless data including the physiological information over a wireless link and is further capable of receiving voice and manually entered input signals. A host includes a digital file for receiving and storing the wireless data, control logic to process the wireless data to generate a status of the user, memory for recording the status, and an output for communicating the status or associated information over a communication link to display output devices located remotely from the host.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: October 4, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9400215
    Abstract: A diagnostic system includes a semiconductor light emitter(s) configured to generate an input beam having a wavelength shorter than about 2.5 microns. An optical amplifier(s) configured to receive a portion of the input beam communicates an intermediate beam to an output end of the optical amplifier. An optical fiber(s) configured to receive a portion of the intermediate beam forms an output beam with an associated wavelength. A subsystem having lenses or mirrors receives a received portion of the output beam and delivers a delivered portion of the output beam to a sample. The delivered portion has a temporal duration greater than approximately 30 picoseconds and a repetition rate between continuous wave and Megahertz or higher. A time averaged intensity of the delivered portion is less than approximately 50 MW/cm2. A light detection system collects and analyzes a fraction of the delivered portion that reflects or transmits from the sample.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: July 26, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20160047787
    Abstract: A measurement system includes a light source generating an output optical beam using semiconductor sources generating an input beam, optical amplifiers outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming a first optical beam. A nonlinear element broadens the output beam spectrum to at least 10 nm, the spectrum comprising a near-infrared wavelength of 700-2500 nm. A measurement apparatus receives the output optical beam and delivers to a sample an analysis output beam. A receiver receives and processes the analysis output beam reflected or transmitted from the sample.
    Type: Application
    Filed: October 6, 2015
    Publication date: February 18, 2016
    Inventor: Mohammed N. Islam
  • Publication number: 20160010971
    Abstract: An optical system includes a tunable semiconductor light emitter that generates an input beam having a wavelength shorter than about 2.5 microns, an optical isolator coupled to the emitter and configured to block reflected light into the emitter, an optical amplifier receiving the input beam and outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming an output beam. A subsystem includes lenses or mirrors that deliver the output beam to a sample. The subsystem may include an Optical Coherence Tomography (OCT) apparatus having a sample arm and a reference arm, the output beam having a temporal duration greater than approximately 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity less than approximately 50 MW/cm2. The system may also include a light detection system collecting any of the output beam that reflects or transmits from the sample.
    Type: Application
    Filed: September 22, 2015
    Publication date: January 14, 2016
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150316415
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR.
    Type: Application
    Filed: December 17, 2013
    Publication date: November 5, 2015
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150305658
    Abstract: Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
    Type: Application
    Filed: December 17, 2013
    Publication date: October 29, 2015
    Applicant: OMNI MEDSCI. INC.
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150305627
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
    Type: Application
    Filed: December 17, 2013
    Publication date: October 29, 2015
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. ISLAM
  • Patent number: 9164032
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources for identification of counterfeit drugs may perform spectroscopy using a super-continuum laser to provide detection in a non-contact and non-destructive manner at stand-off or remote distances with minimal sample preparation. Also, near-infrared or SWIR light may penetrate through plastic containers and packaging, permitting on-line inspection and rapid scanning. The near-infrared or SWIR spectroscopy may also be used to detect illicit drugs and their chemical composition. Moreover, the spectroscopic techniques may also be applied to quality assessment and control in pharmaceutical manufacturing, thus permitting the implementation of smart manufacturing with feedback control. Fiber super-continuum lasers may emit light in the near-infrared or SWIR between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 20, 2015
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Publication number: 20150265151
    Abstract: A diagnostic system includes a sensor generating signals associated with physiological parameters, a proximity sensor, and a position/location sensor. A software application generates data representing physiological information based on the sensors signals and operates on a control system adapted to receive, store, and process the physiological information. The control system includes a touch-screen, a voice recognition module, and a wireless transceiver transmitting wireless data including the physiological information. The control system may receive voice input signals and manually entered input signals. A host includes a digital file for receiving and storing the wireless data, and control logic to process the wireless data to generate status information. The control logic includes voice recognition software to process voice input signals.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150250542
    Abstract: A system and method for selectively processing target tissue material in a patient include a laser subsystem for generating an output laser beam and a catheter assembly including an optical fiber for guiding the output laser beam. The beam has a predetermined selected wavelength between 900 nm and 2600 nm. The catheter assembly is sized to extend through an opening in a first part of the patient to a tissue material processing site within the patient. A beam delivery and focusing subsystem includes a focal distance, which may be adjustable, that positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material.
    Type: Application
    Filed: May 21, 2015
    Publication date: September 10, 2015
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150247756
    Abstract: A diagnostic system includes a semiconductor light emitter(s) configured to generate an input beam having a wavelength shorter than about 2.5 microns. An optical amplifier(s) configured to receive a portion of the input beam communicates an intermediate beam to an output end of the optical amplifier. An optical fiber(s) configured to receive a portion of the intermediate beam forms an output beam with an associated wavelength. A subsystem having lenses or mirrors receives a received portion of the output beam and delivers a delivered portion of the output beam to a sample. The delivered portion has a temporal duration greater than approximately 30 picoseconds and a repetition rate between continuous wave and Megahertz or higher. A time averaged intensity of the delivered portion is less than approximately 50 MW/cm2. A light detection system collects and analyzes a fraction of the delivered portion that reflects or transmits from the sample.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 3, 2015
    Inventor: Mohammed N. ISLAM