Patents by Inventor Mohammed Rabiul Islam
Mohammed Rabiul Islam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220128759Abstract: A structure includes an optical interposer attached to a package substrate, wherein the optical interposer includes a silicon waveguide, a first photonic component optically coupled to the silicon waveguide, a second photonic component optically coupled to the silicon waveguide, and an interconnect structure extending over the silicon waveguide, over the first photonic component, and over the second photonic component, wherein the interconnect structure is electrically connected to the first photonic component and to the second photonic component, a first semiconductor device attached to the interconnect structure, wherein the first semiconductor device is electrically connected to the first photonic component through the interconnect structure, and a second semiconductor device attached to the interconnect structure, wherein the second semiconductor device is electrically connected to the second photonic component through the interconnect structure.Type: ApplicationFiled: January 3, 2022Publication date: April 28, 2022Inventors: Mohammed Rabiul Islam, Stefan Rusu, Weiwei Song
-
Publication number: 20220066099Abstract: Structures and methods for high speed interconnection in photonic systems are described herein. In one embodiment, a photonic device is disclosed. The photonic device includes: a substrate; a plurality of metal layers on the substrate; a photonic material layer comprising graphene over the plurality of metal layers; and an optical routing layer comprising a waveguide on the photonic material layer.Type: ApplicationFiled: August 31, 2020Publication date: March 3, 2022Inventors: Weiwei SONG, Stefan RUSU, Mohammed Rabiul ISLAM
-
Patent number: 11215753Abstract: A structure includes an optical interposer attached to a package substrate, wherein the optical interposer includes a silicon waveguide, a first photonic component optically coupled to the silicon waveguide, a second photonic component optically coupled to the silicon waveguide, and an interconnect structure extending over the silicon waveguide, over the first photonic component, and over the second photonic component, wherein the interconnect structure is electrically connected to the first photonic component and to the second photonic component, a first semiconductor device attached to the interconnect structure, wherein the first semiconductor device is electrically connected to the first photonic component through the interconnect structure, and a second semiconductor device attached to the interconnect structure, wherein the second semiconductor device is electrically connected to the second photonic component through the interconnect structure.Type: GrantFiled: February 27, 2020Date of Patent: January 4, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mohammed Rabiul Islam, Stefan Rusu, Weiwei Song
-
Publication number: 20210271020Abstract: A structure includes an optical interposer attached to a package substrate, wherein the optical interposer includes a silicon waveguide, a first photonic component optically coupled to the silicon waveguide, a second photonic component optically coupled to the silicon waveguide, and an interconnect structure extending over the silicon waveguide, over the first photonic component, and over the second photonic component, wherein the interconnect structure is electrically connected to the first photonic component and to the second photonic component, a first semiconductor device attached to the interconnect structure, wherein the first semiconductor device is electrically connected to the first photonic component through the interconnect structure, and a second semiconductor device attached to the interconnect structure, wherein the second semiconductor device is electrically connected to the second photonic component through the interconnect structure.Type: ApplicationFiled: February 27, 2020Publication date: September 2, 2021Inventors: Mohammed Rabiul Islam, Stefan Rusu, Weiwei Song
-
Publication number: 20210117605Abstract: An integrated circuit design method includes receiving an integrated circuit design, and determining a floor plan for the integrated circuit design. The floor plan includes an arrangement of a plurality of functional cells and a plurality of tap cells. Potential latchup locations in the floor plan are determined, and the arrangement of at least one of the functional cells or the tap cells is modified based on the determined potential latchup locations.Type: ApplicationFiled: December 21, 2020Publication date: April 22, 2021Inventors: Po-Chia Lai, Kuo-Ji Chen, Wen-Hao Chen, Wun-Jie Lin, Yu-Ti Su, Mohammed Rabiul Islam, Shu-Yi Ying, Stefan Rusu, Kuan-Te Li, David Barry Scott
-
Patent number: 6573173Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.Type: GrantFiled: June 20, 2002Date of Patent: June 3, 2003Assignee: Motorola, Inc.Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
-
Patent number: 6551919Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.Type: GrantFiled: October 3, 2001Date of Patent: April 22, 2003Assignee: Motorola, Inc.Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
-
Publication number: 20020151167Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.Type: ApplicationFiled: June 20, 2002Publication date: October 17, 2002Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
-
Patent number: 6444569Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.Type: GrantFiled: April 16, 2001Date of Patent: September 3, 2002Assignee: Motorola, Inc.Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
-
Publication number: 20020039836Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.Type: ApplicationFiled: October 3, 2001Publication date: April 4, 2002Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
-
Patent number: 6326301Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.Type: GrantFiled: July 13, 1999Date of Patent: December 4, 2001Assignee: Motorola, Inc.Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
-
Publication number: 20010027083Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.Type: ApplicationFiled: April 16, 2001Publication date: October 4, 2001Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
-
Patent number: 6297155Abstract: A method for electroplating a copper layer (118) over a wafer (20) powers a cathode of an electroplating system (10) in a manner that obtains improved copper interconnects. A control system (34) powers the cathode of the system (10) with a mix of two or more of: (i) positive low-powered DC cycles (201 or 254); (ii) positive high-powered DC cycles (256 or 310); (iii) low-powered, pulsed, positive-power cycles (306 or 530); (iv) high-powered, pulsed, positive-powered cycles (212, 252, 302, or 352); and/or (v) negative pulsed cycles (214, 304, 510, 528, or 532). The collection of these cycles functions to electroplate copper or a like metal (118) onto the wafer (20). During electroplating, insitu process control and/or endpointing (506, 512, or 520) is performed to further improve the resulting copper interconnect.Type: GrantFiled: May 3, 1999Date of Patent: October 2, 2001Assignee: Motorola Inc.Inventors: Cindy Reidsema Simpson, Robert Douglas Mikkola, Matthew T. Herrick, Brett Caroline Baker, David Moralez Pena, Edward Acosta, Rina Chowdhury, Marijean Azrak, Cindy Kay Goldberg, Mohammed Rabiul Islam
-
Patent number: 6274478Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scrubber.Type: GrantFiled: July 13, 1999Date of Patent: August 14, 2001Assignee: Motorola, Inc.Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan