Patents by Inventor Mohd Kamran Akhtar

Mohd Kamran Akhtar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11877434
    Abstract: A method of forming a microelectronic device structure comprises exposing a silicon structure to an etching chemistry at a first bias voltage of greater than about 500 V to form at least one initial trench between sidewalls of features formed in the silicon structure. The method also comprises exposing at least the sidewalls of the features to the etching chemistry at a second bias voltage of less than about 100 V to remove material from the sidewalls to expand the at least one initial trench and form at least one broader trench without substantially reducing a height of the features. Related apparatuses and electronic systems are also disclosed.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: January 16, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Yan Li, Song Guo, Mohd Kamran Akhtar, Alex J. Schrinsky
  • Publication number: 20230209822
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 11631684
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20230077163
    Abstract: A method of forming a semiconductor device structure comprises forming a stack structure over a substrate, the stack structure comprising tiers each independently comprising a sacrificial structure and an insulating structure and longitudinally adjacent the sacrificial structure. A masking structure is formed over a portion of the stack structure. A photoresist is formed over the masking structure and over additional portions of the stack structure not covered by the masking structure. The photoresist and the stack structure are subjected to a series of material removal processes to selectively remove portions of the photoresist and portions of the stack structure not covered by one or more of the masking structure and remaining portions of the photoresist to form a stair step structure. Semiconductor devices and additional methods of forming a semiconductor device structure are also described.
    Type: Application
    Filed: October 27, 2022
    Publication date: March 9, 2023
    Inventors: Troy R. Sorensen, Mohd Kamran Akhtar
  • Patent number: 11594536
    Abstract: Some embodiments include an integrated assembly having a CMOS region with fins extending along a first direction, and with gating structures extending across the fins. A circuit arrangement is associated with the CMOS region and includes a pair of the gating structures spaced by an intervening region having a missing gating structure. The circuit arrangement has a first dimension along the first direction. A second region is proximate to the CMOS region. Conductive structures are associated with the second region. Some of the conductive structures are electrically coupled with the circuit arrangement. A second dimension is a distance across said some of the conductive structures along the first direction. The conductive structures and the circuit arrangement are aligned such that the second dimension is substantially the same as the first dimension. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: February 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yong Mo Yang, Mohd Kamran Akhtar, Huyong Lee, Sangmin Hwang, Song Guo
  • Patent number: 11563008
    Abstract: Some embodiments include an integrated assembly having digit-line-contact-regions between pairs of capacitor-contact-regions. The capacitor-contact-regions are arranged with six adjacent capacitor-contact-regions in a substantially rectangular configuration. Conductive plugs are coupled with the capacitor-contact-regions. Conductive redistribution material is coupled with the conductive plugs. Upper surfaces of the conductive redistribution material are arranged in a substantially hexagonal-close-packed configuration. Digit lines are over the digit-line-contact-regions. Insulative regions are between the digit lines and the conductive plugs. The insulative regions contain voids and/or low-k dielectric material. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Guangjun Yang, Vinay Nair, Devesh Dadhich Shreeram, Ashwin Panday, Kangle Li, Zhiqiang Xie, Silvia Borsari, Mohd Kamran Akhtar, Si-Woo Lee
  • Patent number: 11508742
    Abstract: A method of forming a semiconductor device structure comprises forming a stack structure over a substrate, the stack structure comprising tiers each independently comprising a sacrificial structure and an insulating structure and longitudinally adjacent the sacrificial structure. A masking structure is formed over a portion of the stack structure. A photoresist is formed over the masking structure and over additional portions of the stack structure not covered by the masking structure. The photoresist and the stack structure are subjected to a series of material removal processes to selectively remove portions of the photoresist and portions of the stack structure not covered by one or more of the masking structure and remaining portions of the photoresist to form a stair step structure. Semiconductor devices and additional methods of forming a semiconductor device structure are also described.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: November 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Troy R. Sorensen, Mohd Kamran Akhtar
  • Publication number: 20220293598
    Abstract: Some embodiments include an integrated assembly having a CMOS region with fins extending along a first direction, and with gating structures extending across the fins. A circuit arrangement is associated with the CMOS region and includes a pair of the gating structures spaced by an intervening region having a missing gating structure. The circuit arrangement has a first dimension along the first direction. A second region is proximate to the CMOS region. Conductive structures are associated with the second region. Some of the conductive structures are electrically coupled with the circuit arrangement. A second dimension is a distance across said some of the conductive structures along the first direction. The conductive structures and the circuit arrangement are aligned such that the second dimension is substantially the same as the first dimension. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Yong Mo Yang, Mohd Kamran Akhtar, Huyong Lee, Sangmin Hwang, Song Guo
  • Publication number: 20220285357
    Abstract: Some embodiments include an integrated assembly having digit-line-contact-regions between pairs of capacitor-contact-regions. The capacitor-contact-regions are arranged with six adjacent capacitor-contact-regions in a substantially rectangular configuration. Conductive plugs are coupled with the capacitor-contact-regions. Conductive redistribution material is coupled with the conductive plugs. Upper surfaces of the conductive redistribution material are arranged in a substantially hexagonal-close-packed configuration. Digit lines are over the digit-line-contact-regions. Insulative regions are between the digit lines and the conductive plugs. The insulative regions contain voids and/or low-k dielectric material. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 8, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Guangjun Yang, Vinay Nair, Devesh Dadhich Shreeram, Ashwin Panday, Kangle Li, Zhiqiang Xie, Silvia Borsari, Mohd Kamran Akhtar, Si-Woo Lee
  • Patent number: 11239242
    Abstract: Some embodiments include a method of forming an integrated assembly. A construction is formed to include a conductive structure having a top surface, and a pair of sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface, and rails are along the sidewall surfaces. The rails include sacrificial material. The sacrificial material is removed to leave openings. Sealant material is formed to extend within the openings. The sealant material has a lower dielectric constant than the insulative material. Some embodiments include an integrated assembly having a conductive structure with a top surface and a pair of opposing sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface. Voids are along the sidewall surfaces and are capped by sealant material. The sealant material has a lower dielectric constant than the insulative material.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Guangjun Yang, Mohd Kamran Akhtar, Silvia Borsari, Alex J. Schrinsky
  • Patent number: 11239240
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Publication number: 20220013527
    Abstract: A method of forming a microelectronic device structure comprises exposing a silicon structure to an etching chemistry at a first bias voltage of greater than about 500 V to form at least one initial trench between sidewalls of features formed in the silicon structure. The method also comprises exposing at least the sidewalls of the features to the etching chemistry at a second bias voltage of less than about 100 V to remove material from the sidewalls to expand the at least one initial trench and form at least one broader trench without substantially reducing a height of the features. Related apparatuses and electronic systems are also disclosed.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Inventors: Yan Li, Song Guo, Mohd Kamran Akhtar, Alex J. Schrinsky
  • Patent number: 11088147
    Abstract: Apparatus, such as electronic devices and structures thereof, include at least one doped surface of a base (e.g., semiconductor) material. A dopant of the at least one doped surface is concentrated along the surface, defining a thickness, on or in the base material, not exceeding about one atomic layer. Methods for forming the doped surfaces involve gas-phase doping exposed surfaces of the base material in situ, within a same material-removal tool used to form at least one opening defined at least partially by the base material and into which the dopant is to be introduced.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jaydip Guha, Saurabh Keshav, Srinivas Pulugurtha, Mohd Kamran Akhtar, James B. Franek, Alex J. Schrinsky
  • Publication number: 20210233922
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region are majority doped with a same dopant type. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending across a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends outwardly from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 10998326
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 4, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20200411529
    Abstract: Apparatus, such as electronic devices and structures thereof, include at least one doped surface of a base (e.g., semiconductor) material. A dopant of the at least one doped surface is concentrated along the surface, defining a thickness, on or in the base material, not exceeding about one atomic layer. Methods for forming the doped surfaces involve gas-phase doping exposed surfaces of the base material in situ, within a same material-removal tool used to form at least one opening defined at least partially by the base material and into which the dopant is to be introduced.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Inventors: Jaydip Guha, Saurabh Keshav, Srinivas Pulugurtha, Mohd Kamran Akhtar, James B. Franek, Alex J. Schrinsky
  • Publication number: 20200321347
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20200312857
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Publication number: 20200286898
    Abstract: Some embodiments include a method of forming an integrated assembly. A construction is formed to include a conductive structure having a top surface, and a pair of sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface, and rails are along the sidewall surfaces. The rails include sacrificial material. The sacrificial material is removed to leave openings. Sealant material is formed to extend within the openings. The sealant material has a lower dielectric constant than the insulative material. Some embodiments include an integrated assembly having a conductive structure with a top surface and a pair of opposing sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface. Voids are along the sidewall surfaces and are capped by sealant material. The sealant material has a lower dielectric constant than the insulative material.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Guangjun Yang, Mohd Kamran Akhtar, Silvia Borsari, Alex J. Schrinsky
  • Patent number: 10734395
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock