Patents by Inventor Mohyee Mikhemar

Mohyee Mikhemar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130267183
    Abstract: According to one embodiment, a compact low-power receiver comprises a front-end producing a front-end gain and a back-end producing a back-end gain. The front-end includes a transconductance amplifier providing digital gain control and outputting an amplified receive signal, a mixer for generating a down-converted signal from the amplified receive signal, and a transimpedance amplifier (TIA) including a current mode buffer. The TIA provides gain control for amplifying the down-converted signal to produce a front-end output signal. In one embodiment, the back end includes a second-order low-pass filter to produce a filtered signal from the front-end output signal and an analog-to-digital converter (ADC), wherein the filtered signal is fed directly to the ADC without direct-current (DC) offset cancellation being performed. In various embodiments, the front-end gain is substantially greater than the back-end gain.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 10, 2013
    Inventors: Mohyee Mikhemar, Hooman Darabi, Masoud Kahrizi
  • Publication number: 20130259163
    Abstract: According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an s output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TTA) implemented using a current mode to buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Applicant: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Amir Hadji-Abdolhamid, Hooman Darabi
  • Publication number: 20130259172
    Abstract: According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TIA) implemented using a current mode buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Applicant: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Amir Hadji-Abdolhamid, Hooman Darabi
  • Publication number: 20130241654
    Abstract: A gain control system may include an input terminal that receives an input signal. The gain control system may include a first transistor having a source connected with the input terminal and a drain connected with an output terminal. The gain control system may include a second transistor having a gate connected with the input terminal and the source of the first transistor. The second transistor may have a drain connected with the output terminal. The second transistor may generate a reduction signal. The output terminal may output an output signal based on the input signal and the reduction signal.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20130241669
    Abstract: A duplexing system may be used with an electronic device. The duplexing system may include a duplexer connected with an antenna. The duplexing system may include a balancing network. The balancing network may be connected with the duplexer, have an adjustable network impedance, and include an active component. The balancing network may be configured to adjust the network impedance to match an antenna impedance of the antenna.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20130241670
    Abstract: A power distributing duplexer system is provided. In some aspects, the system includes a duplexer configured to couple an antenna to a transmitter and a receiver. The system also includes a balancing network coupled to the duplexer. The balancing network includes a network impedance. The balancing network is configured to adjust the network impedance to match an antenna impedance of the antenna. The balancing network includes a plurality of balancing network modules coupled to the duplexer. Each of the plurality of balancing network modules is configured to receive a portion of an output voltage from the duplexer.
    Type: Application
    Filed: December 14, 2012
    Publication date: September 19, 2013
    Applicant: Broadcom Corporation
    Inventors: Mohyee MIKHEMAR, Hooman Darabi
  • Patent number: 8514035
    Abstract: An RF front-end with on-chip transmitter/receiver isolation using a gyrator is presented herein. The RF front end is configured to support full-duplex communication and includes a gyrator and a transformer. The gyrator includes two transistors that are configured to isolate the input of a low-noise amplifier (LNA) from the output of a power amplifier (PA). The gyrator is further configured to isolate the output of the PA from the input of the LNA. The gyrator is at least partially or fully capable of being integrated on silicon-based substrate.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8502626
    Abstract: An RF front-end with on-chip transmitter/receiver isolation using a gyrator is presented herein. The RF front end is configured to support full-duplex communication and includes a gyrator and a transformer. The gyrator includes a metal plate and an inductor that are configured to isolate the input of a low-noise amplifier (LNA) from the output of a power amplifier (PA) using the Hall effect. The gyrator is further configured to isolate the output of the PA from the input of the LNA. The gyrator is at least partially or fully capable of being integrated on silicon-based substrate.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: August 6, 2013
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8457580
    Abstract: According to one embodiment, a compact low-power receiver comprises a front-end producing a front-end gain and a back-end producing a back-end gain. The front-end includes a transconductance amplifier providing digital gain control and outputting an amplified receive signal, a mixer for generating a down-converted signal from the amplified receive signal, and a transimpedance amplifier (TIA) including a current mode buffer. The TIA provides gain control for amplifying the down-converted signal to produce a front-end output signal. In one embodiment, the back end includes a second-order low-pass filter to produce a filtered signal from the front-end output signal and an analog-to-digital converter (ADC), wherein the filtered signal is fed directly to the ADC without direct-current (DC) offset cancellation being performed. In various embodiments, the front-end gain is substantially greater than the back-end gain.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 4, 2013
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi, Masoud Kahrizi
  • Patent number: 8452253
    Abstract: According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TIA) implemented using a current mode buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 28, 2013
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Amir Hadji-Abdolhamid, Hooman Darabi
  • Patent number: 8422979
    Abstract: Aspects of a method and system for a low-noise, highly-linear receiver front-end are provided. In this regard, a received signal may be processed via one or more transconductances, one or more transimpedance amplifiers (TIAs), and one or more mixers to generate a first baseband signal corresponding to a voltage at a node of the receiver, and a second baseband signal corresponding to a current at the node of the receiver. The first signal and the second signal may be processed to recover information from the received signal. The first signal may be generated via a first one or more signal paths of the receiver and the second signal may be generated via a second one or more signal paths of the receiver.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 16, 2013
    Assignee: Broadcom Corporation
    Inventors: David Murphy, Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20130070878
    Abstract: A method and apparatus is disclosed to effectively frequency translate a filter characterized as a low quality factor (Q) filter, corresponding to a baseband frequency of approximately zero Hertz or to an intermediate frequency (IF), to a filter characterized as a high Q filter at frequencies greater than the baseband frequency or the IF. A downconversion mixer frequency translates a communication signal to the baseband frequency or the IF using a first local oscillator signal to provide a downconverted communication signal. A filter corresponding to the baseband frequency or the IF filters the downconverted communication signal to provide a filtered communication signal. An upconversion mixer frequency translates a communication signal using a second local oscillator signal. The frequency translation by the upconversion mixer, in effect, translates the filter characterization from the low Q filter to the high Q filter at frequencies greater than the baseband frequency or the IF.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8369807
    Abstract: A receiver includes a frequency translation bandpass filter (FTBPF) and an RF receiver section. The RF receiver section includes an amplifier section, a phase information detection module, an amplitude information detection module, and analog to digital conversion (ADC) modules. The FTBPF is operable to filter an inbound radio frequency (RF) signal to produce a filtered inbound RF signal. The amplifier section is operable to amplify the filtered inbound RF signal to produce an amplified inbound RF signal. The phase information detection module, when enabled, is operable to determine phase information from the amplified inbound RF signal. The amplitude information detection module, when enabled, is operable to determine amplitude information from the amplified inbound RF signal. A first one of the ADCs is operable to convert the phase information into digital phase information and a second one of the ADCs is operable to convert the amplitude information into digital amplitude information.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: February 5, 2013
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8285241
    Abstract: A method and apparatus is disclosed to effectively frequency translate a filter characterized as a low quality factor (Q) filter corresponding to a baseband frequency of approximately zero Hertz or to an intermediate frequency (IF) to a filter characterized as a high Q filter at frequencies greater than the baseband frequency or the IF. A downconversion mixer is used to frequency translate a communication signal to the baseband frequency or the IF using a first local oscillator signal to provide a downconverted communication signal. A filter characterized as the low Q filter corresponding to the baseband frequency or the IF filters the downconverted communication signal to provide a filtered communication signal. An upconversion mixer is used to frequency translate a communication signal using a second local oscillator signal, the second local oscillator signal being substantially similar in frequency of the first local oscillator signal.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 9, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20120238232
    Abstract: Aspects of a method and system for a low-noise, highly-linear receiver front-end are provided. In this regard, a received signal may be processed via one or more transconductances, one or more transimpedance amplifiers (TIAs), and one or more mixers to generate a first baseband signal corresponding to a voltage at a node of the receiver, and a second baseband signal corresponding to a current at the node of the receiver. The first signal and the second signal may be processed to recover information from the received signal. The first signal may be generated via a first one or more signal paths of the receiver and the second signal may be generated via a second one or more signal paths of the receiver.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Inventors: David Murphy, Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8208865
    Abstract: Embodiments of an RF front-end are presented herein. In an embodiment, the RF front end comprises a power amplifier (PA), a noise-matched low-noise amplifier (LNA), a balance network, and a four-port isolation module. A first port of the isolation module is coupled to an antenna. The second port of the isolation module is coupled to the balancing network. The third port is coupled an output of the PA. The fourth port is coupled to a differential input of the noise-matched LNA. The isolation module effectively isolates the third port from the fourth port to prevent strong outbound signals received at the third port from saturating the LNA coupled to the fourth port. Isolation is achieved via electrical balance. In an embodiment, the signal path coupling the antenna at the first port to the differential input of the LNA at the fourth port is shorter than a wavelength of the inbound signal received by the antenna.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 26, 2012
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8208866
    Abstract: A radio frequency (RF) transceiver front-end includes an antenna, an RF receiver section, an RF transmitter section, a balancing circuit, and a multiple node isolation and coupling circuit. The multiple node isolation and coupling circuit is coupled to the antenna, the RF receiver section, the RF transmitter section, and the balancing circuit. The multiple node isolation and coupling circuit provides an inbound RF signal from the antenna to the RF receiver section and provides an outbound RF signal from the RF transmitter section to the antenna, wherein, by providing an isolating signal to the balancing circuit, the multiple node isolation and coupling circuit substantially isolates the outbound RF signal from the inbound RF signal.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 26, 2012
    Assignee: Broadcom Corporation
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20120040632
    Abstract: According to one embodiment, an input control unit to provide isolation and electrostatic discharge (ESD) protection for a circuit in an RF transceiver comprises a switching device coupled between an input of the circuit and ground. The switching device is configured to provide ESD protection while the circuit is activated. The switching device is further configured to ground the input while the circuit is non-activated, thereby concurrently isolating the input and providing ESD protection. A method for providing isolation and ESD protection for a circuit in an RF transceiver comprises activating the circuit, providing ESD protection while the circuit is activated, deactivating the circuit, and coupling an input of the circuit to ground, thereby concurrently isolating the input and providing ESD protection while the circuit is non-activated. The method and switching device can be used to provide isolation and ESD protection to receive bands in the RF transceiver.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20120021713
    Abstract: According to one embodiment, a concurrent impedance and noise matching transconductance amplifier designed for implementation in a receiver comprises an input device configured to couple to a matching network of the receiver, and a boost capacitor connected to the input device to increase an input capacitance of the transconductance amplifier. The boost capacitor is selected to substantially minimize the receiver noise and to enable the concurrent impedance and noise matching of the receiver and the matching network. In one embodiment, the receiver comprises the transconductance amplifier to provide an amplified receive signal, and a mixer to produce a down-converted signal corresponding to the amplified receive signal, wherein the mixer is coupled to the transconductance amplifier by a blocking capacitor. The blocking capacitor is selected to substantially increase an amplitude ratio of the down-converted signal to the amplified receive signal to substantially increase the front-end gain of the receiver.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Mohyee Mikhemar, Hooman Darabi
  • Publication number: 20120021712
    Abstract: According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TIA) implemented using a current mode buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Mohyee Mikhemar, Amir Hadji-Abdolhamid, Hooman Darabi