Patents by Inventor Monika Backhaus-Ricoult

Monika Backhaus-Ricoult has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140339744
    Abstract: The present disclosure relates to porous ceramic articles and a method of making the same. The porous ceramic articles have microstructure of sinter bonded or reaction bonded large pre-reacted particles and pore network structure exhibiting large pore necks. The method of making the porous ceramic articles involves using pre-reacted particles having one or more phases. A plastic ceramic precursor composition is also disclosed. The composition includes a mixture of at least one of dense, porous, or hollow spheroidal pre-reacted particles and a liquid vehicle.
    Type: Application
    Filed: April 11, 2014
    Publication date: November 20, 2014
    Applicant: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose
  • Publication number: 20140225022
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as lanthanum boride, titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 14, 2014
    Applicant: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Lisa Anne Moore, Charlene Marie Smith, Todd Parrish St Clair
  • Publication number: 20140150413
    Abstract: A trough filter integrated with a thermoelectric generator includes annular filter modules having a support structure at its inner circumference, a filter element, and a support structure at its outer circumference. The filter elements may be configured to form troughs. An annular exhaust gas outlet channel or gas inlet channel may be formed between filter modules. The thermoelectric generator may be positioned in the exhaust gas outlet or inlet channel. A vehicle includes the trough filter integrated with a thermoelectric generator downstream from an internal combustion engine. A method of treating exhaust gas uses a trough filter with an integrated thermoelectric generator.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Monika Backhaus-Ricoult, Thomas Dale Ketcham
  • Publication number: 20140096685
    Abstract: An after-treatment device for an automotive engine includes a substrate having a thermoelectric generation element disposed in an interior volume thereof. The substrate has a first end, a second end, and a lateral dimension that define an interior volume, and is configured to flow engine exhaust gas from the first end to the second end such that the flowing exhaust gas is in thermal contact with the thermoelectric generation element.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Inventors: Monika Backhaus-Ricoult, Peng Chen, Mark J. Soulliere
  • Patent number: 8628680
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 14, 2014
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Charlene Marie Smith, Todd Parrish St Clair
  • Publication number: 20130323110
    Abstract: The disclosure relates to a p-type skutterudite material and a method of making the same, comprising providing a p-type skutterudite material having a general formula: IyFe4-xMxSb12/z(J) wherein I represents one or more filling atoms in a skutterudite phase, the total filling amount y satisfying 0.01?y?1; M represents one or more dopant atoms with the doping amount x satisfying 0?x?4; J represents one or more second phases with the molar ratio z satisfying 0?z?0.5; wherein second phase precipitates are dispersed throughout the skutterudite phase.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 5, 2013
    Inventors: Monika Backhaus-Ricoult, Lidong Chen, Lin He, Xiangyang Huang, Ruiheng Liu, Pengfei Qiu, Jiong Yang, Wenqing Zhang
  • Publication number: 20130240801
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: CORNING INCORPORATED
    Inventors: MONIKA BACKHAUS-RICOULT, LISA ANNE MOORE, CHARLENE MARIE SMITH, TODD PARRISH ST. CLAIR
  • Publication number: 20130126800
    Abstract: A thermoelectric oxide material having at least one family of periodic planar crystallographic defects, where the planar defect interspacings match a significant fraction of the phonon dispersion (free path distribution) in the oxide material. As an example, a sub-stoichiometric, composite thermoelectric oxide material can be represented by the formula NbO2.5?x:M, where 0<x?1.5 and M represents a second phase. Optionally, the material may be doped. The thermoelectric material displays a thermoelectric figure of merit (ZT) of 0.15 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting raw materials under reducing conditions to form the sub-stoichiometric oxide composite. The second phase may promote reduction of the oxide. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Inventor: Monika Backhaus-Ricoult
  • Publication number: 20130026427
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: Monika Backhaus-Ricoult, Charlene Marie Smith, Todd Parrish St. Clair
  • Patent number: 8333912
    Abstract: A process for making a composite material and the composite materials having thermoelectric properties.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: December 18, 2012
    Assignees: Corning Incorporated, Shanghai Institute of Ceramics
    Inventors: Lidong Chen, Monika Backhaus-Ricoult, Lin He, Zhen Xiong, Xihong Chen, Xiangyang Huang
  • Publication number: 20120297830
    Abstract: A method for improving the thermo-mechanical properties of an aluminum-titanate composite, the composite including at least one of strontium-feldspar, mullite, cordierite, or a combination thereof, including: combining a glass source and an aluminum-titanate source into a batch composition; and firing the combined batch composite composition to produce the aluminum-titanate composite. Another method for improving the thermo-mechanical properties of the composite dips a fired composite article into phosphoric acid, and then anneal the dipped composite article. The resulting composites have a thin glass film situated between the ceramic granules of the composite, which can arrest microcrack propagation.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose
  • Patent number: 8309044
    Abstract: An after-treatment device for an automotive engine includes a substrate having a thermoelectric generation element disposed in an interior volume thereof. The substrate has a first end, a second end, and an outermost lateral dimension that defines an interior volume, and is configured to flow engine exhaust gas from the first end to the second end such that the flowing exhaust gas is in thermal contact with the thermoelectric generation element.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: November 13, 2012
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Peng Chen, Mark J Soulliere
  • Publication number: 20120180842
    Abstract: A thermoelectric device, a method for fabricating a thermoelectric device and electrode materials applied to the thermoelectric device are provided according to the present invention. The present invention is characterized in arranging thermoelectric material power, interlayer materials and electrode materials in advance according to the structure of thermoelectric device; adopting one-step sintering method to make a process of forming bulked thermoelectric materials and a process of combining with electrodes on the devices to be completed simultaneously; and obtaining a ? shape thermoelectric device finally. Electrode materials related to the present invention comprise binary or ternary alloys or composite materials, which comprise at least a first metal selected from Cu, Ag, Al or Au, and a second metal selected from Mo, W, Zr, Ta, Cr, Nb, V or Ti.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 19, 2012
    Inventors: Lidong Chen, Monika Backhaus-Ricoult, Lin He, Xiaoya Li, Yunshan Tang, Xugui Xia, Degang Zhao
  • Patent number: 8198116
    Abstract: A method for fabricating thermoelectric device is provided. The method comprises placing a first electrode in a die, forming a first interlayer on an upper surface of the first electrode; positioning a separating plate on an upper surface of the first interlayer to divide an inner space of the die into a plurality of cells, and depositing a first thermoelectric material on the first interlayer within a first fraction of the cells, and depositing a second thermoelectric material on the first interlayer within a second fraction of the cells, sintering the die contents, and removing the separating plate after sintering to obtain a ? shaped thermoelectric device.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 12, 2012
    Assignees: Corning Incorporated, Shanghai Institute of Ceramics
    Inventors: Lidong Chen, Monika Backhaus-Ricoult, Lin He, Xiaoya Li, Xugui Xia, Degang Zhao
  • Patent number: 8148297
    Abstract: A porous ceramic material is disclosed having a principal cordierite phase, the porous ceramic material exhibiting a normalized strength greater than 20 MPa. The cordierite phase has a reticular microstructure. A method for forming a porous ceramic body having a predominant phase of cordierite is provided which includes forming a body from a plasticized mixture of inorganic ceramic-forming ingredients that include a magnesia source, a silica source, and an alumina source, the alumina source including alumina-containing elongated particles, wherein at least 90 wt % of the alumina-containing elongated particles have a length of 50 to 150 ?m, and then firing the body.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose, James William Zimmermann
  • Patent number: 8119234
    Abstract: An aluminum titanate-based ceramic is provided having an anisotropic microstructure which includes the reaction products of a plurality of ceramic-forming precursors. The batch contains at least one precursor in fibrous form. The inorganic ceramic has low thermal expansion. Porous ceramic bodies and the method of manufacture are also provided.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 21, 2012
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose, James William Zimmermann
  • Publication number: 20110311421
    Abstract: An after-treatment device for an automotive engine includes a substrate having a thermoelectric generation element disposed in an interior volume thereof. The substrate has a first end, a second end, and an outermost lateral dimension that defines an interior volume, and is configured to flow engine exhaust gas from the first end to the second end such that the flowing exhaust gas is in thermal contact with the thermoelectric generation element.
    Type: Application
    Filed: September 9, 2010
    Publication date: December 22, 2011
    Inventors: Monika Backhaus-Ricoult, Peng Chen, Mark J. Soulliere
  • Publication number: 20110229794
    Abstract: Disclosed are composite electrodes for use in a solid oxide fuel cell devices. The electrodes are comprised of a sintered mixture of lanthanum strontium ferrite phase and yttria stabilized zirconia phase. The lanthanum strontium ferrite phase has the general formula (LaxSry)i±?(FeaMnbCoc)O3; wherein 1.O?x?0.65; 0.35?y?0.0; x+y=1.0, ?=0-0.1, a+b+c=1, and a>0.6. Also disclosed are methods of making the composite electrodes and solid oxide fuel cell devices comprising same.
    Type: Application
    Filed: August 6, 2008
    Publication date: September 22, 2011
    Inventors: Monika Backhaus-Ricoult, Michael Edward Badding, Jacquelin Leslie Brown, Kimberley Louise Work
  • Patent number: 7964314
    Abstract: Disclosed is a segmented modular solid oxide fuel cell device having a plurality of independently controllable electrical power producing segments disposed within a common thermal environment. Also disclosed are methods for selectively operating one or more segments of the disclosed segmented modular solid oxide fuel cell device. Also disclosed are methods for performing a maintenance process on one or more segments of a segmented modular fuel cell device during fuel cell operation.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Michael Edward Badding, James Micheal Harris, Paul Marx
  • Patent number: 7960009
    Abstract: A porous ceramic substrate includes a first phase of microcracked cordierite ceramic material and a second phase of non-cordierite metal oxide particles dispersed in the cordierite ceramic, wherein at least a portion of the interface between the first and second phases is wetted by glass and the particles of the second phase have a size in the range of from about 0.1 to about 10 ?m.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose