Patents by Inventor Monte Manning

Monte Manning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6235562
    Abstract: A thin film field effect transistor includes: a) a thin film channel region; b) a pair of opposing electrically conductive first and second source/drain regions adjacent the thin film channel region; c) a gate insulator and a gate positioned adjacent the thin film channel region for electrically energizing the channel region to switch on the thin film field effect transistor; d) the first source/drain region having a first thickness, the second source/drain region having a second thickness, the channel region having a third thickness; at least one of the first and second thicknesses being greater than the third thickness. Methods are disclosed for making thin field effect transistors.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: May 22, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Charles H. Dennison, Monte Manning
  • Patent number: 6229212
    Abstract: An electrical interconnection method includes: a) providing two conductive layers separated by an insulating material on a semiconductor wafer; b) etching the conductive layers and insulating material to define and outwardly expose a sidewall of each conductive layer; c) depositing an electrically conductive material over the etched conductive layers and their respective sidewalls; and d) anisotropically etching the conductive material to define an electrically conductive sidewall link electrically interconnecting the two conductive layers. Such is utilizable to make thin film transistors and other circuitry.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 8, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Charles H. Dennison, Monte Manning
  • Publication number: 20010000756
    Abstract: A thin film transistor includes: a) a thin film transistor layer comprising a source region, a channel region and a drain region; the thin film transistor layer further comprising a drain offset region positioned between the drain region and the channel region; b) the channel region being substantially polycrystalline and having a first average crystalline grain size; and c) the drain offset region being substantially polycrystalline and having a second average crystalline grain size, the second average crystalline grain size being larger than the first average crystalline grain size. A method for forming such a construction using polycrystalline materials, preferably polysilicon, and an amorphizing silicon implant with subsequent recrystallization is also disclosed.
    Type: Application
    Filed: December 15, 2000
    Publication date: May 3, 2001
    Inventors: Shubneesh Batra, Monte Manning, Sanjay Banerjee, John Damiano
  • Patent number: 6225172
    Abstract: A method of forming a field effect transistor includes, a) providing a silicon substrate having impurity doping of a first conductivity type; b) providing source and drain diffusion regions of a second conductivity type within the silicon substrate, the source region and the drain region being spaced from one another to define a channel region therebetween within the silicon substrate; c) providing a gate relative to the silicon substrate operatively adjacent the channel region; and d) providing respective ohmic electrical contacts to the source region and the drain region, the electrical contact to the source region comprising a substrate leaking junction, the electrical connection to the drain region not comprising a substrate leaking junction. A field effect transistor is also disclosed.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: May 1, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6214652
    Abstract: A thin film transistor includes: a) a thin film transistor layer comprising a source region, a channel region and a drain region; the thin film transistor layer further comprising a drain offset region positioned between the drain region and the channel region; b) the channel region being substantially polycrystalline and having a first average crystalline grain size; and c) the drain offset region being substantially polycrystalline and having a second average crystalline grain size, the second average crystalline grain size being larger than the first average crystalline grain size. A method for forming such a construction using polycrystalline materials, preferably polysilicon, and an amorphizing silicon implant with subsequent recrystallization is also disclosed.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: April 10, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Monte Manning, Sanjay Banerjee, John Damiano, Jr.
  • Patent number: 6207512
    Abstract: The invention is a method for creating a portion of an integrated circuit on a semiconductor wafer. The invention comprises doping a substrate to form a doped well region having an opposite conductivity type than the substrate. Separate photomasking steps are used to define N-channel and P-channel metal oxide semiconductor (MOS) transistor gates. A trench is formed near the well without using additional masking steps. The trench improves the latch up immunity of the device. The invention is also the apparatus created by the method and comprises a trench positioned in the substrate to interrupt the conduction of minority carriers between two regions of the substrate. Thus, the invention improves latch up immunity without additional process complexity.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: March 27, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6204521
    Abstract: A semiconductor processing method of forming a conductive polysilicon line relative to a substrate includes, a) providing a line of silicon on a substrate, the line having an outer top surface and outwardly exposed opposing outer sidewall surfaces, the line ultimately comprising conductively doped polysilicon; b) masking the line outer top surface with a masking material; c) with the masking material in place, depositing a metal layer atop the substrate and over the masking material and the outwardly exposed line outer sidewall surfaces; d) annealing the line to impart a silicidation reaction between the metal and opposing silicon sidewalls to form opposing metal silicide runners extending along the line sidewalls, the masking material preventing a silicidation reaction from occurring between the metal and line outer top surface; and e) stripping the metal layer from atop the line. Such a line is preferably used as a bottom gate for a thin film transistor.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: March 20, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6200839
    Abstract: A method of forming a thin film transistor includes, a) forming a thin film transistor layer of semiconductive material; b) providing a gate operatively adjacent the thin film transistor layer; c) forming at least one electrically conductive sidewall spacer over at least one lateral edge of the gate, the spacer being electrically continuous therewith; and d) providing a source region, a drain region, a drain offset region, and a channel region in the thin film transistor layer; the drain offset region being positioned operatively adjacent the one electrically conductive sidewall spacer and being gated thereby. The spacer is formed by anisotropically etching a spacer forming layer.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 13, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Monte Manning, Sanjay Banerjee, LeTien Jung
  • Patent number: 6200835
    Abstract: A semiconductor processing method of forming a conductive polysilicon line relative to a substrate includes, a) providing a line of silicon on a substrate, the line having an outer top surface and outwardly exposed opposing outer sidewall surfaces, the line ultimately comprising conductively doped polysilicon; b) masking the line outer top surface with a masking material; c) with the masking material in place, depositing a metal layer atop the substrate and over the masking material and the outwardly exposed line outer sidewall surfaces; d) annealing the line to impart a silicidation reaction between the metal and opposing silicon sidewalls to form opposing metal silicide runners extending along the line sidewalls, the masking material preventing a silicidation reaction from occurring between the metal and line outer top surface; and e) stripping the metal layer from atop the line. Such a line is preferably used as a bottom gate for a thin film transistor.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: March 13, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6177346
    Abstract: A method of forming a field effect transistor includes, a) providing a silicon substrate having impurity doping of a first conductivity type; b) providing source and drain diffusion regions of a second conductivity type within the silicon substrate, the source region and the drain region being spaced from one another to define a channel region therebetween within the silicon substrate; c) providing a gate relative to the silicon substrate operatively adjacent the channel region; and d) providing respective ohmic electrical contacts to the source region and the drain region, the electrical contact to the source region comprising a substrate leaking junction, the electrical connection to the drain region not comprising a substrate leaking junction. A field effect transistor is also disclosed.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: January 23, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6175134
    Abstract: A thin film transistor includes a thin film transistor layer having a source region, a channel region and a drain region. In one implementation, a gate of the transistor is disposed laterally proximate the thin film channel region and comprises an annulus which laterally encircles the laterally proximate thin film channel region. In another implementation, a channel region of a thin film transistor extends elevationally away from a substrate. Source and drain regions are operatively associated with the channel region and are elevationally spaced therealong and apart from one another. A gate is disposed over the substrate and laterally proximate the channel region.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: January 16, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6166398
    Abstract: A method of forming a thin film transistor includes, a) forming a thin film transistor layer of semiconductive material; b) providing a gate operatively adjacent the thin film transistor layer; c) forming at least one electrically conductive sidewall spacer over at least one lateral edge of the gate, the spacer being electrically continuous therewith; and d) providing a source region, a drain region, a drain offset region, and a channel region in the thin film transistor layer; the drain offset region being positioned operatively adjacent the one electrically conductive sidewall spacer and being gated thereby. The spacer is formed by anisotropically etching a spacer forming layer.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: December 26, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Monte Manning, Sanjay Banerjee, LeTien Jung
  • Patent number: 6150201
    Abstract: A thin film field effect transistor includes: a) a thin film channel region; b) a pair of opposing electrically conductive first and second source/drain regions adjacent the thin film channel region; c) a gate insulator and a gate positioned adjacent the thin film channel region for electrically energizing the channel region to switch on the thin film field effect transistor; d) the first source/drain region having a first thickness, the second source/drain region having a second thickness, the channel region having a third thickness; at least one of the first and second thicknesses being greater than the third thickness. Methods are disclosed for making thin field effect transistors.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: November 21, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Charles H. Dennison, Monte Manning
  • Patent number: 6147406
    Abstract: A semiconductor processing method of making electrical connection between an electrically conductive line and a node location includes, a) forming an electrically conductive line over a substrate, the substrate having an outwardly exposed silicon containing node location to which electrical connection is to be made, the line having an outer portion and an inner portion, the inner portion laterally extending outward from the outer portion and having an outwardly exposed portion, the inner portion having a terminus adjacent the node location, and b) electrically connecting the extending inner portion with the node location. An integrated circuit is also described. The integrated circuit includes a semiconductor substrate, a node location on the substrate, and a conductive line over the substrate which is in electrical communication with the node location. The conductive line includes an outer portion and an inner portion.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: November 14, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6141239
    Abstract: A static memory cell is described which has cross coupled pulldown transistors and dual access transistors. The memory cell is fabricated such that balanced current paths are formed through the two pulldown transistors. A single word line is used to activate the access transistors which couple the memory cell to complementary bit lines. The memory cells, as viewed in a plan view, have the single word line and gates of the pulldown transistors fabricated in parallel.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 31, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6137146
    Abstract: A method of forming BiCMOS circuitry includes, i) conducting a first common second conductivity type implant into, a) a first substrate area to comprise a second conductivity type well for a first area first conductivity type FET, and b) a third substrate area to comprise one of a bipolar transistor second conductivity type collector or emitter region; ii) providing field oxide regions and active area regions within first, second and third areas of the substrate; iii) conducting a first common first conductivity type implant into, a) the second substrate area to comprise a first conductivity type channel stop region beneath field oxide in the second area, and b) the third substrate area to comprise the bipolar transistor base; and iv) conducting a second common second conductivity type implant into, a) at least one of the first or the second substrate areas to comprise at least one of a source/drain implant or a graded junction implant for at least one of the first or second conductivity type FETs, and b) the
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: October 24, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6130576
    Abstract: In a microcircuit device such as a memory chip, where a bank of state devices such as fuses and anti-fuses determines the enabling and disabling of redundant circuitry, a scheme for blowing one or more state devices by applying a programming voltage through a switching circuit comprising thin film transistors (TFTs) which are not damaged by the device blowing programming voltage. The TFTs can be activated by a low voltage enable signal provided by a state device designator logic module.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: October 10, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6117761
    Abstract: A method is disclosed for providing a self-aligned silicide strap for connecting thin polysilicon layers (poly-1 and poly-2, etc.) separated by non-conducting gaps. A butting contact opening to the layers is formed in an overlying insulating layer. The contact exposes the poly-1 and poly-2 layers. A thin polysilicon layer (poly-3) is then deposited over the insulating layer and into the contact. This is followed by deposition of a refractory metal layer. The poly-3 layer should be thin enough that, alone, it cannot supply enough silicon to support full silicidation of the refractory metal layer. The structure is next sintered so that a silicide strap is formed in the contact opening and across exposed portions of the poly-1 and poly-2 layers. The ratio of silicon to titanium in regions over the insulating layer is lower than that in the strap, such that these more metallic regions may be selectively removed.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: September 12, 2000
    Assignee: Micron Technology, Inc.
    Inventor: H. Monte Manning
  • Patent number: 6117716
    Abstract: A method of forming BiCMOS circuitry includes, i) conducting a first common second conductivity type implant into, a) a first substrate area to comprise a second conductivity type well for a first area first conductivity type FET, and b) a third substrate area to comprise one of a bipolar transistor second conductivity type collector or emitter region; ii) providing field oxide regions and active area regions within first, second and third areas of the substrate; iii) conducting a first common first conductivity type implant into, a) the second substrate area to comprise a first conductivity type channel stop region beneath field oxide in the second area, and b) the third substrate area to comprise the bipolar transistor base; and iv) conducting a second common second conductivity type implant into, a) at least one of the first or the second substrate areas to comprise at least one of a source/drain implant or a graded junction implant for at least one of the first or second conductivity type FETs, and b) the
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: September 12, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning
  • Patent number: 6096636
    Abstract: A semiconductor processing method of forming a plurality of conductive lines includes, a) providing a substrate; b) providing a first conductive material layer over the substrate; c) providing a first insulating material layer over the first conductive layer; d) etching through the first insulating layer and the first conductive layer to the substrate to both form a plurality of first conductive lines from the first conductive layer and provide a plurality of grooves between the first lines, the first lines being capped by first insulating layer material, the first lines having respective sidewalls; e) electrically insulating the first line sidewalls; and f) after insulating the sidewalls, providing the grooves with a second conductive material to form a plurality of second lines within the grooves which alternate with the first lines. Integrated circuitry formed according to the method, and other methods, is also disclosed.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: August 1, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Monte Manning