Patents by Inventor Morio Watanabe

Morio Watanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10839155
    Abstract: A morpheme analysis unit sets beforehand a meaning-candidate tag and a sentimental theme tag for a morpheme required to be input as a text. A syntax analysis unit generates an index where a clause including a meaning-candidate tag and a sentimental theme tag and a type of each tag. A meaning attribute extraction unit recognizes a clause including a meaning-candidate and a type of tag with reference to the index, and then applies a meaning attribute rule, sets a meaning attribute tag for a necessary clause, and updates the index. A sentimental analysis unit also recognizes a clause including a sentimental theme tag and a clause including a meaning attribute tag with reference to the index, and then applies a sentimental analysis rule and sets a sentimental attribute tag for a necessary clause.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 17, 2020
    Assignee: NOMURA RESEARCH INSTITUTE, LTD.
    Inventors: Osamu Oshima, Morio Watanabe
  • Publication number: 20190026264
    Abstract: A morpheme analysis unit sets beforehand a meaning-candidate tag and a sentimental theme tag for a morpheme required to be input as a text. A syntax analysis unit generates an index where a clause including a meaning-candidate tag and a sentimental theme tag and a type of each tag. A meaning attribute extraction unit recognizes a clause including a meaning-candidate and a type of tag with reference to the index, and then applies a meaning attribute rule, sets a meaning attribute tag for a necessary clause, and updates the index. A sentimental analysis unit also recognizes a clause including a sentimental theme tag and a clause including a meaning attribute tag with reference to the index, and then applies a sentimental analysis rule and sets a sentimental attribute tag for a necessary clause.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Applicant: Nomura Research Institute, Ltd.
    Inventors: Osamu OSHIMA, Morio WATANABE
  • Patent number: 6731847
    Abstract: The present invention relates to an optical fiber having a large positive dispersion in a wavelength band of 1.55 &mgr;m in order to compensate for a negative dispersion inherent in an NZ-DSF in the wavelength band of 1.55 &mgr;m. This optical fiber comprises a depressed cladding structure constituted by a core region; an inner cladding, provided on the outer periphery of the core region, having a lower refractive index; and an outer cladding having a higher refractive index. In this optical fiber, the relative refractive index difference of the core region with respect to the outer cladding is 0.30% or more but 0.50% or less, and the relative refractive index difference of the inner cladding with respect to the outer cladding is −0.50% or more but −0.02% or less. Also, the optical fiber has a dispersion greater than 18 ps/nm/km at a wavelength of 1.55 &mgr;m, and an effective area of 70 &mgr;m2 or more at the wavelength of 1.55 &mgr;m.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: May 4, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takatoshi Kato, Kazuhiro Okamoto, Mitsuomi Hada, Shinjiro Hagihara, Morio Watanabe, Kohei Kobayashi
  • Patent number: 6614976
    Abstract: The present invention relates to an optical fiber having a large positive dispersion in a wavelength band of 1.55 &mgr;m in order to compensate for a negative dispersion inherent in an NZ-DSF in the wavelength band of 1.55 &mgr;m. This optical fiber comprises a depressed cladding structure constituted by a core region; an inner cladding, disposed at the outer periphery of the core region, having a lower refractive index; and an outer cladding having a higher refractive index. In this optical fiber, the relative refractive index difference of the core region with respect to the outer cladding is at least 0.30% but not greater than 0.50%, and the relative refractive index difference of the inner cladding with respect to the outer cladding is at least −0.50% but not greater than −0.02%. Also, the optical fiber has a dispersion greater than 18 ps/nm/km at a wavelength of 1.55 &mgr;m, and an effective cross-sectional area Aeff of at least 70 &mgr;m2 at the wavelength of 1.55 &mgr;m.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: September 2, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takatoshi Kato, Kazuhiro Okamoto, Mitsuomi Hada, Shinjiro Hagihara, Morio Watanabe, Kohei Kobayashi
  • Publication number: 20020106172
    Abstract: The present invention relates to an optical fiber having a large positive dispersion in a wavelength band of 1.55 &mgr;m in order to compensate for a negative dispersion inherent in an NZ-DSF in the wavelength band of 1.55 &mgr;m. This optical fiber comprises a depressed cladding structure constituted by a core region; an inner cladding, disposed at the outer periphery of the core region, having a lower refractive index; and an outer cladding having a higher refractive index. In this optical fiber, the relative refractive index difference of the core region with respect to the outer cladding is at least 0.30% but not greater than 0.50%, and the relative refractive index difference of the inner cladding with respect to the outer cladding is at least −0.50% but not greater than −0.02%. Also, the optical fiber has a dispersion greater than 18 ps/nm/km at a wavelength of 1.55 &mgr;m, and an effective cross-sectional area Aeff of at least 70 &mgr;m2 at the wavelength of 1.55 &mgr;m.
    Type: Application
    Filed: January 7, 2002
    Publication date: August 8, 2002
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takatoshi Kato, Kazuhiro Okamoto, Mitsuomi Hada, Shinjiro Hagihara, Morio Watanabe, Kohei Kobayashi
  • Patent number: 6337942
    Abstract: The present invention relates to an optical fiber having a large positive dispersion in a wavelength band of 1.55 &mgr;m in order to compensate for a negative dispersion inherent in an NZ-DSF in the wavelength band of 1.55 &mgr;m. This optical fiber comprises a depressed cladding structure constituted by a core region; an inner cladding, disposed at the outer periphery of the core region, having a lower refractive index; and an outer cladding having a higher refractive index. In this optical fiber, the relative refractive index difference of the core region with respect to the outer cladding is at least 0.30% but not greater than 0.50%, and the relative refractive index difference of the inner cladding with respect to the outer cladding is at least −0.50% but not greater than −0.02%. Also, the optical fiber has a dispersion greater than 18 ps/nm/km at a wavelength of 1.55 &mgr;m, and an effective cross-sectional area Aeff of at least 70 &mgr;m2 at the wavelength of 1.55 &mgr;m.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: January 8, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takatoshi Kato, Kazuhiro Okamoto, Mitsuomi Hada, Shinjiro Hagihara, Morio Watanabe, Kohei Kobayashi
  • Patent number: 5597398
    Abstract: A process for producing a porous glass preform for optical fiber by depositing fine glass particles on an outer surface of a glass material while moving the glass material, including the steps of: preheating a portion of the glass material for not less than 5 minutes to clean the portion of the glass material in an apparatus for depositing fine glass particles; and depositing fine glass particles on the portion of the glass material cleaned by the preheating, in the apparatus for depositing fine glass particles.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: January 28, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinji Ishikawa, Yoshiki Chigusa, Motonori Nakamura, Yoshinori Makio, Morio Watanabe
  • Patent number: 5277816
    Abstract: A process for producing titanium dioxide which discharges no waste is disclosed. In a first step, a sulfuric acid solution containing titanium ion with one or more kinds of metal ions is contacted with a first organic solvent to extract the titanium ion as a sulfuric acid complex. The organic solvent containing the extracted titanium as a sulfuric acid complex (titanyl sulfate) is contacted with an aqueous liquid to strip the titanium into the aqueous liquid and regenerate the first organic solvent. In a second step, the aqueous liquid containing the titanium is subjected to hydrolysis to form insoluble titanium hydroxide, and the titanium hydroxide is washed with dilute sulfuric acid and/or clear water.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: January 11, 1994
    Assignee: Solex Research Corporation of Japan
    Inventor: Morio Watanabe
  • Patent number: 5061460
    Abstract: A method for manufacturing titanium oxide, comprising bringing a sulfuric acid solution containing predominantly titanium ion together with one or more kinds of metal ions into contact with an organic solvent containing one or more species selected from the group of oxygen-containing organic solvents, alkyl amines, and alkyl aryl amines to extract the titanium ions in a form of a sulfuric acid complex from the sulfuric acid solution, and bringing the organic solvent containing the extracted titanium into contact with water or an aqueous dilute sulfuric acid solution to inversely extract the titanium from the organic solvent to the water or the dilute sulfuric acid solution and to regenerate the organic solvent.
    Type: Grant
    Filed: August 10, 1989
    Date of Patent: October 29, 1991
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Renpei Sei
  • Patent number: 4992248
    Abstract: A method for neutralizing a sulfuric acid solution containing predominantly Zn ion, comprising adding, to the sulfuric acid solution, at least one compound selected from the group of chlorine-containing compounds of Na ion, K ion, Mg ion, Ca ion, and NH.sub.4 ion in an amount at least chemically equivalent to SO.sub.4 ion contained; and then bringing the sulfuric acid solution into contact with an organic solvent composed of one or more species selected from the group of oxygen-containing organic solvents and alkylamine organic solvents to extract Zn ion from the sulfuric acid solution as a chloride complex to the organic solvent. The sulfuric acid solution after extraction of Zn ion is further treated by addition of an oxidizing agent or by an electrochemical means to convert Fe.sup.2+ into to Fe.sup.
    Type: Grant
    Filed: August 10, 1989
    Date of Patent: February 12, 1991
    Assignee: Solex Corporation of Japan
    Inventors: Morio Watanabe, Renpei Sei
  • Patent number: 4952378
    Abstract: A method for neutralization of sulfuric acid containing Fe ions, comprising adding ions selected from the group consisting of Na ions, K ions, Mg ions, Ca ions and NH.sub.4 ions in the form of a compound containing chlorine to a sulfuric acid solution to be treated in an amount corresponding at least to the chemical equivalent to SO.sub.4.sup.2-, and bringing the resultant solution into contact with an organic solvent containing oxygen or comprising alkylamine for extracting Fe ions from said aqueous solution into the organic phase as chloride complex. Iron chloride can be recovered from the organic phase by distilling or evaporating the organic solvent or by extracting back it into water.
    Type: Grant
    Filed: June 28, 1988
    Date of Patent: August 28, 1990
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Renpei Sei
  • Patent number: 4789444
    Abstract: Process for electrolytically producing metals of Ni, Co, Zn, Cu, Mn, and Cr, comprising, electrolyzing an aqueous solution containing ions of a metal as main component selected from Ni, Co, Zn, Cu, Mn, and Cr in a cathode compartment to deposit the metal electrolytically on a cathode, the cathode compartment being separated by one or more diaphragms from the remainder of the solution where iron or a metal containing iron is used for material of corrosible anode, and maintaining the concentration of iron ion in the solution circulating in the anode compartment at a low level by bringing the whole or a part of the circulating solution into contact with an organic solvent which is prepared by adding petroleum hydrocarbon for dilution of one or more extracting agents selected from the group consisting of carboxylic acids, alkylaryl phosphoric acids, hydroxyoximes, alkyl phosphoric acids, alkylamines, ketones, alkylamides, and neutral phosphoric acid esters, to extract and remove the iron or the chloro-complex ion
    Type: Grant
    Filed: February 12, 1987
    Date of Patent: December 6, 1988
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura, Nobuatsu Watanabe
  • Patent number: 4741893
    Abstract: Process for producing fluorides of Mo, W, Nb, Ta, V, Re, Ti, Zr, Hf, Co, Ni, Cr, Sb, Sn, Zn, Pb, Al and rare earth metals comprising heating fluorine-containing ammonium salts of corresponding metals in a stream of an inert or reducing gas to convert them into fluorides of the metals.
    Type: Grant
    Filed: June 9, 1986
    Date of Patent: May 3, 1988
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura
  • Patent number: 4678646
    Abstract: A crystallizer comprising a mixing zone of an organic solvent containing ions of a metal extracted therein and an aqueous separating solution provided at the upper part of a main crystallizer body, a lower-part opened organic solvent settling zone provided outside of the mixing zone for receiving and settling the organic solvent overflowing out of the mixing zone, a crystals developing zone having a downwardly narrowing cross section provided at the lower part of the main crystallizer body, a descending pipe extending from the lower end of the mixing zone to the lower part of the crystals developing zone, a crystals fluidizing medium inlet provided at the lower end of the crystals developing zone, a separating solution discharge pipe and a crystals discharge pipe.
    Type: Grant
    Filed: December 30, 1985
    Date of Patent: July 7, 1987
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura, Nobuatsu Watanabe
  • Patent number: 4670230
    Abstract: A process for selectively stripping and separating iron ions from an organic solvent (A) which comprises bringing the organic solvent (A) containing iron and zinc ions, and containing one or more compounds selected from the group consisting of alkyl phosphoric acid, alkyl-aryl phosphoric acid, alkyl thio phosphoric acid and alkyl-aryl thio phosphoric acid together with a petroleum hydrocarbon as a diluent, into contact with an aqueous solution containing NH.sub.4.sup.+ and F.sup.- ions so as to selectively strip the iron ions into the aqueous solution despite the coexistence of zinc ions.
    Type: Grant
    Filed: July 22, 1985
    Date of Patent: June 2, 1987
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura
  • Patent number: 4497655
    Abstract: A process for production of metallic iron by heating ammonium iron fluoride or iron fluoride in hydrogen stream.
    Type: Grant
    Filed: November 2, 1983
    Date of Patent: February 5, 1985
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura
  • Patent number: 4478804
    Abstract: A recovery process of uranium comprising:(1) extracting uranium ions with an organic solvent containing one or more compounds selected from the group consisting of alkyl phosphoric acid, alkyl-aryl phosphoric acid, alkyl dithio phosphoric acid, aryl dithio phosphoric acid, neutral phosphoric acid ester and alkyl amine together with a petroleum hydrocarbon as a diluent; and(2) stripping the uranium ions in the resultant organic solvent from the step (1) to an aqueous phase with contact of an aqueous solution containing one or more compounds selected from the groups of NH.sub.4 F, NH.sub.4 HF.sub.2, KF or KHF.sub.2.
    Type: Grant
    Filed: August 25, 1982
    Date of Patent: October 23, 1984
    Assignee: Solex Research Corporation
    Inventors: Morio Watanabe, Sanji Nishimura
  • Patent number: 4434518
    Abstract: A sport shoe in which the shoe sole is bonded to an insert layer during the formation of the shoe sole by injection-molding and the assembly of the shoe sole and the insert layer is secured to the shoe upper by an adhesive applied between the insert layer and the shoe upper.
    Type: Grant
    Filed: March 2, 1982
    Date of Patent: March 6, 1984
    Assignee: Daicel Chemical Industries, Ltd.
    Inventor: Morio Watanabe
  • Patent number: 4434002
    Abstract: A process for production of metallic iron by heating ammonium iron fluoride or iron fluoride in a hydrogen stream.
    Type: Grant
    Filed: August 20, 1981
    Date of Patent: February 28, 1984
    Assignee: Solex Research Corporation of Japan
    Inventors: Morio Watanabe, Sanji Nishimura
  • Patent number: 4397682
    Abstract: A process for preparing high purity superfine powders of less than 0.5.mu. diameter of Mo, W, Nb, Zr, Cu, Zn, Co, Ni and In by first producing their fluoride or a double fluoride with ammonium and then decomposing them under heat in a hydrogen-containing stream. Features of the present process are that the double fluoride of the metals with ammonium is faster in crystal growth than their fluoride, recrystallization of these salts can be repeated as desired when a high purity of the metals is required, and particles of a uniform size can be obtained easier.
    Type: Grant
    Filed: November 10, 1981
    Date of Patent: August 9, 1983
    Assignee: Solex Research Corporation
    Inventors: Morio Watanabe, Sanji Nishimura, Nobuatsu Watanabe