Patents by Inventor Moses M. David

Moses M. David has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210162559
    Abstract: The present disclosure relates to abrasive articles including conformable coatings, e.g. a hydrophilic coating, and polishing systems therefrom. The present disclosure provides an abrasive article including a ceramic body having an abrading surface and an opposed second surface, wherein the abrading surface of the ceramic body includes a plurality of engineered features each having a base and a distal end opposite the base and the ceramic body has a Mohs hardness of at least 7.5; a conformable metal oxide coating adjacent to and conforming to the plurality of engineered features, wherein the conformable metal oxide coating includes a first surface; and a conformable polar organic-metallic coating in contact with the first surface of the conformable metal oxide coating, wherein the conformable polar organic-metallic coating includes a chemical compound having at least one metal and an organic moiety having at least one polar functional group.
    Type: Application
    Filed: July 5, 2018
    Publication date: June 3, 2021
    Inventors: Chi-Fan Chen, Justin A. Riddle, Vincent J. Laraia, Caleb T. Nelson, Wen-Hsiang Hsieh, Moses M. David, Naiyong Jing, Jun MA
  • Publication number: 20210147648
    Abstract: Articles and intermediates are described comprising an organic polymeric base member and a hardcoat layer disposed on the organic polymeric base member, wherein the hardcoat layer can be stretched 25-75% without cracking. A siliceous layer is disposed on the hardcoat layer. The siliceous layer has a porosity of no greater than 10% and a thickness no greater than 1 micron. In some embodiments, the article further comprises a surface layer comprising a zwitterionic compound bonded to the siliceous layer.
    Type: Application
    Filed: August 14, 2019
    Publication date: May 20, 2021
    Inventors: Richard J. Pokorny, Joan M. Noyola, Zachary J. Malmberg, Thomas P. Klun, Moses M. David, Jun Ma, Cordell M. Hardy, Chad M. Amb
  • Publication number: 20210146310
    Abstract: A composite membrane for selectively pervaporating a first liquid from a mixture comprising the first liquid and a second liquid. The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A PVP- or PVL-containing polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate and/or disposed on top of the pores to form a layer.
    Type: Application
    Filed: August 14, 2018
    Publication date: May 20, 2021
    Inventors: Jinsheng Zhou, Kazuhiko Mizuno, Moses M. David
  • Publication number: 20210114361
    Abstract: Various embodiments disclosed relate to a surfacing film. The surfacing film includes a base layer. The base layer includes a thermoplastic polyurethane film comprising a reaction product of a reaction mixture of a diisocyanate, a polyester polyol having a melting temperature of at least about 30° C.; and a diol chain extender. There are many reasons to use the surfacing film including easier and more cost effective manufacturing of the surfacing film by directly extruding the base layer by mixing the reaction mixture in an extruder. Another reason to use the surfacing film is that the film has improved resistance to discoloration. Another reason to use the film is that the film shows good toughness.
    Type: Application
    Filed: August 6, 2019
    Publication date: April 22, 2021
    Inventors: Charlie Chia-Tie HO, Yongshang LU, John J. JAROS, Jay M. JENNEN, Ryan M. BRAUN, Sean P. ADDISON, Trevor A. LARSON, Richard J. POKORNY, Joan M. NOYOLA, Zachary J. MALMBERG, Thomas P. KLUN, Moses M. DAVID, Jun MA, Cordell M. HARDY
  • Patent number: 10967399
    Abstract: An organofluorine coating on a major surface of a substrate, wherein the organofluorine coating has a surface composition of about 5 at % to about 15 at % oxygen and about 30 at % to about 50 at % fluorine.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 6, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Ta-Hua Yu, Moses M. David, Kevin D. Hagen, Samuel J. Carpenter, Eric J. Hanson, Martin B. Wolk, Steven J. McMan, Evan L. Schwartz
  • Publication number: 20210095405
    Abstract: Dimensionally-stable fibrous structures including ceramic-coated melt-blown nonwoven fibers made of a flame-retarding polymer and processes for producing such fire-resistant nonwoven fibrous structures. The melt-blown fibers include poly(phenylene sulfide) in an amount sufficient for the nonwoven fibrous structures to pass one or more fire-resistance test, e.g. UL 94 V0, FAR 25.853 (a), FAR 25.856 (a), and CA Title 19, without any halogenated flame-retardant additive, and have a ceramic coating. The melt-blown fibers are subjected to a controlled in-flight heat treatment at a temperature below a melting temperature of the poly(phenylene sulfide) immediately upon exiting from at least one orifice of a melt-blowing die, in order to impart dimensional stability to the fibers.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 1, 2021
    Inventors: Liyun L. Ren, Pingfan Wu, Daniel J. Zillig, Sachin Talwar, Jonathan H. Alexander, Ta-Hua Yu, Moses M. David, James A. Phipps
  • Publication number: 20210094272
    Abstract: A method of applying a pattern to a nonplanar surface. A stamp has a major surface with pattern elements having a lateral dimension of greater than 0 and less than about 5 microns. The major surface of the stamp has a functionalizing molecule with a functional group selected to chemically bind to the nonplanar surface. The stamp is positioned to initiate rolling contact with the nonplanar surface, and contacts the nonplanar surface to form a self-assembled monolayer (SAM) of the functionalizing material thereon and impart the arrangement of pattern elements thereto. The major surface of the stamp is translated with respect to the nonplanar surface such that: a contact pressure is controlled at an interface between the stamping surfaces and the nonplanar surface, and a contact force at the interface is allowed to vary while the stamping surfaces and the nonplanar surface are in contact with each other.
    Type: Application
    Filed: December 26, 2018
    Publication date: April 1, 2021
    Inventors: James Zhu, Karl K. Stensvad, Daniel M. Lentz, Thomas J. Metzler, Moses M. David
  • Publication number: 20210096279
    Abstract: Anti-reflective article includes a layer defining an anti-reflective surface. The anti-reflective surface includes a series of alternating micro-peaks and micro-spaces extending along an axis. The surface also includes a series of nano-peaks extending along an axis. The nano-peaks are disposed at least on the micro-spaces and, optionally, the micro-peaks. The article may be disposed on a photovoltaic module or skylight to reduce reflections and resist the collection of dust and dirt.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 1, 2021
    Inventors: Timothy J. Hebrink, Todd G. Pett, Moses M. David, James P. Burke, Vivian W. Jones, Haiyan Zhang
  • Publication number: 20210070008
    Abstract: A vehicle sensor system comprising an exterior surface and a polymeric film on the exterior surface. The polymeric film has a first surface opposite the exterior surface, and the first surface is either hydrophobic or hydrophilic.
    Type: Application
    Filed: January 8, 2019
    Publication date: March 11, 2021
    Inventors: Jon P. Nietfeld, Adam J. Meuler, Moses M. David, Richard J. Pokorny, Paul B. Armstrong, Jun Ma, Molly J. Smith, Haeen Sykora, Chad M. Amb
  • Publication number: 20210072135
    Abstract: A sensing element includes a substrate including an electrically non-conductive surface, at least one high surface energy region, and an electrode pair structure disposed on the electrically non-conductive surface. The electrode pair structure includes at least one pair of electrodes having a gap therebetween. At least one of the electrodes is at least partially within the at least one high surface energy region. The sensing element is configured to sense fluid-soluble particulate matter.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 11, 2021
    Inventors: Richard C. Webb, Andrew S. Viner, Deepti Gopalakrishnan, Andrew P. Bonifas, Adam J. Mueler, Moses M. David, James P. Endle, Nicholas G. Amell
  • Publication number: 20210040629
    Abstract: An article including a substrate; a silicon containing layer on the substrate; and a layer comprising metallic Pt on the silicon containing layer.
    Type: Application
    Filed: March 12, 2019
    Publication date: February 11, 2021
    Inventors: Moses M. David, Cedric Bedoya, Jiyoung Park, Amir Gharachorlou, Mary I. Buckett
  • Publication number: 20210008866
    Abstract: A method of applying a pattern to a nonplanar surface. A stamp has a major surface with pattern elements having a lateral dimension of greater than 0 and less than about 5 microns. The major surface of the stamp has a functionalizing molecule with a functional group selected to chemically bind to the nonplanar surface. The stamp is positioned to initiate rolling contact with the nonplanar surface, and contacts the nonplanar surface to form a self-assembled monolayer (SAM) of the functionalizing material thereon and impart the arrangement of pattern elements thereto. The major surface of the stamp is translated with respect to the nonplanar surface such that: a contact force is controlled at an interface between the stamping surfaces and the nonplanar surface, and the contact pressure at the interface is allowed to vary while the stamping surfaces and the nonplanar surface are in contact with each other.
    Type: Application
    Filed: December 26, 2018
    Publication date: January 14, 2021
    Inventors: James Zhu, Karl K. Stensvad, Daniel M. Lentz, Thomas J. Metzler, Moses M. David
  • Publication number: 20200379147
    Abstract: Stray light absorbing films are described. In particular, stray light films including a black substrate, and first and second sets of microstructures are described. The described films can reduce stray light reflections in sensor modules and other optical devices.
    Type: Application
    Filed: January 3, 2019
    Publication date: December 3, 2020
    Inventors: Judith M. Invie, Steven Hin-Chung Kong, John A. Wheatley, Moses M. David
  • Publication number: 20200368690
    Abstract: A separation membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., a first liquid) from a mixture comprising the first fluid (e.g., first liquid) and a second fluid (e.g., second liquid), wherein the separation membrane includes a polymeric ionomer that has a highly fluorinated backbone and recurring pendant groups according to the following formula (Formula I): —O—Rf—[—SO2—N?(Z+)—SO2—R—]m—[SO2]n-Q wherein: Rf is a perfluorinated organic linking group; R is an organic linking group; Z+ is H+, a monovalent cation, or a multivalent cation; Q is H, F, —NH, —O-2 Y+, or —CxF2x+1; Y+ is H+, a monovalent cation, or a multivalent cation; x=1 to 4; m=0 to 6; and n=0 or 1; with the proviso that at least one of m or n must be non-zero.
    Type: Application
    Filed: August 14, 2018
    Publication date: November 26, 2020
    Inventors: Michael A. Yandrasits, David Scott Seitz, Eric F. Funkenbusch, Ryan C. Shirk, Jinsheng Zhou, Eric J. Hanson, Moses M. David, Kazuhiko Mizuno
  • Patent number: 10849234
    Abstract: Multilayer articles that include electrical circuits are prepared by the adhesive transfer of electrical circuit elements to the surface of an adhesive. A number of different methodologies are used, with all of the methodologies including the use of simple layers of circuit-forming material on a releasing substrate and structuring to generate circuit elements which can be transferred to an adhesive surface. In some methodologies, a structured releasing substrate is used to selectively transfer circuit-forming material, either from protrusions on the releasing substrate or from depressions on the releasing substrate. In other methodologies, an unstructured releasing substrate is used and either embossed to form a structured releasing substrate or contacted with a structured adhesive layer to selectively transfer circuit-forming material.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: November 24, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John D. Le, Moses M. David, Jeffrey W. McCutcheon, Hung T. Tran
  • Patent number: 10807046
    Abstract: Asymmetric articles are described including a porous substrate with two opposing major surfaces and a porous structure extending between the surfaces, and a polymeric coating on one of the major surfaces and extending into the porous structure to a depth of the porous structure. Methods for making an asymmetric composite article are also provided, including providing a porous substrate, treating the porous substrate with a plasma treatment or a corona treatment from one major surface to a depth of the porous structure between the two major surfaces. The method further includes applying a coating solution to the treated porous substrate and drying the coating solution to form a composite asymmetric composite article having a polymeric coating on one major surface and extending into the porous structure to the depth of the treated porous structure.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 20, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Michelle M. Mok, Kannan Seshadri, Moses M. David, Seth M. Kirk, Daniel Carvajal
  • Patent number: 10756306
    Abstract: A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 25, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Nicholas C. Erickson, Moses M. David, Xiaoguang Sun, Manoj Nirmal, Haeen Sykora, Hui Luo, Samuel J. Carpenter, Jilliann M. Nelson, Justin P. Meyer, Bert T. Chien, David J. Rowe, Robert L. Brott, David G. Freier, Hyacinth L. Lechuga
  • Patent number: 10737220
    Abstract: A composite membrane for selectively pervaporating a first liquid from a mixture comprising the first liquid and a second liquid. The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The polymer is more permeable to the first liquid than the second liquid but not soluble in the first liquid or the second liquid. The composite membrane may be asymmetric or symmetric with respect to the amount of pore-filling polymer throughout the thickness of the porous substrate.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 11, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jinsheng Zhou, Kazuhiko Mizuno, Moses M. David
  • Publication number: 20200172780
    Abstract: The present disclosure relates to abrasive articles including conformable coatings, e.g. a hydrophobic coating, methods of making and polishing systems therefrom. The present disclosure provides an abrasive layer, having a hydrophobic exterior surface, including at least one of (i) a plurality of individual diamond particles and (ii) a plurality of engineered features having a conformable diamond layer and; a conformable hydrophobic layer in contact with and at least partially coating at least one of the plurality of individual diamond particles and the conformable diamond layer and, wherein the conformable hydrophobic layer includes diamond like glass and forms the hydrophobic exterior surface and the contact angle of the hydrophobic exterior surface is greater than 110 degrees.
    Type: Application
    Filed: July 5, 2018
    Publication date: June 4, 2020
    Inventors: Chi-Fan Chen, Caleb T. Nelson, Moses M. David
  • Publication number: 20200164319
    Abstract: A composite membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., first liquid such as a high octane compound) from a mixture comprising the first fluid (e.g., first liquid such as a high octane compound) and a second fluid (e.g., second liquid such as gasoline). The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The composite membrane further includes at least one of: (a) an ionic liquid mixed with the pore-filling polymer; or (b) an amorphous fluorochemical film disposed on the composite membrane.
    Type: Application
    Filed: August 14, 2018
    Publication date: May 28, 2020
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz, Moses M. David