Patents by Inventor Motoki Nakashima

Motoki Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150155169
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Application
    Filed: November 24, 2014
    Publication date: June 4, 2015
    Inventors: Masashi OOTA, Noritaka ISHIHARA, Motoki NAKASHIMA, Yoichi KUROSAWA, Shunpei YAMAZAKI, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA
  • Patent number: 8975634
    Abstract: An object is to suppress occurrence of oxygen deficiency. An oxide semiconductor film is formed using germanium (Ge) instead of part of or all of gallium (Ga) or tin (Sn). At least one of bonds between a germanium (Ge) atom and oxygen (O) atoms has a bond energy higher than at least one of bonds between a tin (Sn) atom and oxygen (O) atoms or a gallium (Ga) atom and oxygen (O) atoms. Thus, a crystal of an oxide semiconductor formed using germanium (Ge) has a low possibility of occurrence of oxygen deficiency. Accordingly, an oxide semiconductor film is formed using germanium (Ge) in order to suppress occurrence of oxygen deficiency.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Motoki Nakashima
  • Publication number: 20150053971
    Abstract: In a semiconductor device using a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The semiconductor device includes a gate electrode over an insulating surface; an oxide semiconductor film overlapping with the gate electrode; a gate insulating film that is between the gate electrode and the oxide semiconductor film and in contact with the oxide semiconductor film; a protective film in contact with a surface of the oxide semiconductor film that is an opposite side of a surface in contact with the gate insulating film; and a pair of electrodes in contact with the oxide semiconductor film. The spin density of the gate insulating film or the protective film measured by electron spin resonance spectroscopy is lower than 1×1018 spins/cm3, preferably higher than or equal to 1×1017 spins/cm3 and lower than 1×1018 spins/cm3.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 26, 2015
    Inventors: Akiharu MIYANAGA, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA, Motoki NAKASHIMA, Masahiro TAKAHASHI, Shunsuke ADACHI, Takuya HIROHASHI
  • Publication number: 20150041801
    Abstract: A semiconductor device includes a semiconductor layer, a gate electrode overlapping with the semiconductor layer, a first gate insulating layer between the semiconductor layer and the gate electrode, and a second gate insulating layer between the first gate insulating layer and the gate electrode. The first gate insulating layer includes an oxide in which the nitrogen content is lower than or equal to 5 at. %, and the second gate insulating layer includes charge trap states.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 12, 2015
    Inventors: Shunpei YAMAZAKI, Takuya HIROHASHI, Masahiro TAKAHASHI, Motoki NAKASHIMA, Ryosuke WATANABE, Masashi TSUBUKU
  • Patent number: 8889477
    Abstract: A semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Publication number: 20140306221
    Abstract: The stability of a step of processing a wiring formed using copper, aluminum, gold, silver, molybdenum, or the like is increased. Moreover, the concentration of impurities in a semiconductor film is reduced. Moreover, the electrical characteristics of a semiconductor device are improved. In a transistor including an oxide semiconductor film, an oxide film in contact with the oxide semiconductor film, and a pair of conductive films being in contact with the oxide film and including copper, aluminum, gold, silver, molybdenum, or the like, the oxide film has a plurality of crystal parts and has c-axis alignment in the crystal parts, and the c-axes are aligned in a direction parallel to a normal vector of a top surface of the oxide semiconductor film or the oxide film.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 16, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Yasutaka NAKAZAWA, Yukinori SHIMA, Masami JINTYOU, Masayuki SAKAKURA, Motoki NAKASHIMA
  • Patent number: 8604545
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Patent number: 8454748
    Abstract: A calculation method for finding the hole mobility or the electron mobility of an organic film. The method includes the steps of: calculating the electron density of a film using semi-empirical quantum molecular dynamics calculations; using the fact that holes and electrons move easily through regions of high electron density to calculate the probability that a hole or an electron will move in an excited state in which an electron is excited from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) using a Monte Carlo method; and, using the probability as a performance index, calculating the hole mobility from the number of carriers which exist in the HOMO and the orbitals below the HOMO, or calculating the electron mobility from the number of carriers which exist in the LUMO and the orbitals above the LUMO.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Iwaki, Motoki Nakashima
  • Publication number: 20130011962
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 10, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Tetsunori MARUYAMA, Yuki IMOTO, Hitomi SATO, Masahiro WATANABE, Mitsuo MASHIYAMA, Kenichi OKAZAKI, Motoki NAKASHIMA, Takashi SHIMAZU
  • Publication number: 20120325650
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Publication number: 20120312681
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 13, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Publication number: 20120298998
    Abstract: The impurity concentration in the oxide semiconductor film is reduced, and a highly reliability can be obtained.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 29, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Masahiro WATANABE, Mitsuo MASHIYAMA, Kenichi OKAZAKI, Motoki NAKASHIMA, Hideyuki KISHIDA
  • Publication number: 20120267622
    Abstract: Stable electrical characteristics are given to a transistor and a highly reliable semiconductor device is provided. In addition, an oxide material which enables manufacture of such a semiconductor device is provided. An oxide film is used in which two or more kinds of crystalline portions which are different from each other in a direction of an a-axis or a direction of a b-axis in an a-b plane (or the top surface, or the formation surface) are included, and each of the crystalline portions is c-axis aligned, has at least one of triangular atomic arrangement and hexagonal atomic arrangement when seen from a direction perpendicular to the a-b plane, a top surface, or a formation surface, includes metal atoms arranged in a layered manner, or metal atoms and oxygen atoms arranged in a layered manner along the c-axis, and is expressed as In2SnZn2O7(ZnO)m (m is 0 or a natural number).
    Type: Application
    Filed: April 11, 2012
    Publication date: October 25, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA
  • Publication number: 20120153364
    Abstract: An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA, Tatsuya HONDA
  • Publication number: 20110115046
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Motoki NAKASHIMA
  • Patent number: 7932164
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Publication number: 20090230503
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Motoki NAKASHIMA
  • Publication number: 20070150206
    Abstract: A calculation method for finding the hole mobility or the electron mobility of an organic film. The method includes the steps of: calculating the electron density of a film using semi-empirical quantum molecular dynamics calculations; using the fact that holes and electrons move easily through regions of high electron density to calculate the probability that a hole or an electron will move in an excited state in which an electron is excited from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) using a Monte Carlo method; and, using the probability as a performance index, calculating the hole mobility from the number of carriers which exist in the HOMO and the orbitals below the HOMO, or calculating the electron mobility from the number of carriers which exist in the LUMO and the orbitals above the LUMO.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 28, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Iwaki, Motoki Nakashima