Patents by Inventor Mukund Karanjikar

Mukund Karanjikar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060096
    Abstract: A method of producing 1,8-dihydroxy naphthalene (DHN) is provided. The method includes culturing cells under suitable culture conditions for the production of DHN. The cells include a nucleic acid encoding a polyketide synthase polypeptide and one or more nucleic acids encoding one or more protein enzymes used in the DHN melanin pathway. DHN melanin pathway genes may be expressed in the cells, which may recombinant E. coli cells. The cells may include inhibitors to stop the conversion of DHN into melanin within the cells. The cells may include glucose as a cell nutrient. The glucose may be derived from biomass. DHN may be produced, harvested and the harvested DHN may be catalyzed into a cyclic hydrocarbon.
    Type: Application
    Filed: December 20, 2021
    Publication date: February 22, 2024
    Inventors: Mukund Karanjikar, Robert Price, Younghwan Kim, Oyvind Hatlevik
  • Publication number: 20190100843
    Abstract: A method for converting carboxylic acids (including carboxylic acids derived from biomass) into hydrocarbons. The produced hydrocarbons will generally have at least two oxygen containing substituents (or other substituents). In one example of application, the electrolysis converts alkali salts of carboxylic acids into diols which can then be used as solvents or be dehydrated to produce dienes, which can then be used to produce elastic polymeric materials. This process allows custom synthesis of high value chemicals from renewable feed stocks such as carboxylic acids derived from biomass.
    Type: Application
    Filed: April 30, 2018
    Publication date: April 4, 2019
    Inventors: James MOSBY, Sai BHAVARAJU, Mukund KARANJIKAR
  • Patent number: 10145019
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 4, 2018
    Assignee: ENLIGHTEN INNOVATIONS INC.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 10145020
    Abstract: A method for upgrading bio-mass material is provided. The method involves electrolytic reduction of the material in an electrochemical cell having a ceramic, oxygen-ion conducting membrane, where the membrane includes an electrolyte. One or more oxygenated or partially-oxygenated compounds are reduced by applying an electrical potential to the electrochemical cell. A system for upgrading bio-mass material is also disclosed.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: December 4, 2018
    Assignee: Ceramatec, Inc.
    Inventors: Singaravelu Elangovan, Mukund Karanjikar
  • Patent number: 9957622
    Abstract: A method for converting carboxylic acids (including carboxylic acids derived from biomass) into hydrocarbons. The produced hydrocarbons will generally have at least two oxygen containing substituents (or other substituents). In one example of application, the electrolysis converts alkali salts of carboxylic acids into diols which can then be used as solvents or be dehydrated to produce dienes, which can then be used to produce elastic polymeric materials. This process allows custom synthesis of high value chemicals from renewable feed stocks such as carboxylic acids derived from biomass.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 1, 2018
    Assignee: FIELD UPGRADING LIMITED
    Inventors: James Mosby, Sai Bhavaraju, Mukund Karanjikar
  • Patent number: 9752081
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 5, 2017
    Assignee: CERAMATEC, INC.
    Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V Joshi, Pallavi Chitta, David Joel Hunt
  • Patent number: 9677182
    Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 13, 2017
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Publication number: 20170088962
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Application
    Filed: October 11, 2016
    Publication date: March 30, 2017
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 9493882
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 15, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Publication number: 20160040171
    Abstract: The disclosure relates to biological methods of making a hydrocarbon feedstock wherein one-carbon substrates are converted into useful chemicals and fuels. Particularly, genetically engineered bacteria are used to make C4-C10 fatty acids or derivatives from one-carbon substrates such as methanol and carbon dioxide.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 11, 2016
    Inventors: Ka-Yiu SAN, George BENNETT, Mukund KARANJIKAR
  • Patent number: 9051656
    Abstract: An aryl-alkyl (R—Ar) hydrocarbon is prepared by an electrosynthesis process in an electrolytic cell having an alkali ion conductive membrane positioned between an anolyte compartment configured with an anode and a catholyte compartment configured with a cathode. An anolyte solution containing an alkali metal salt of an alkyl carboxylic acid and an aryl compound is introduced into the anolyte compartment. The aryl compound may include an alkali metal salt of an aryl carboxylic acid, an arene (aromatic) hydrocarbon, or an aryl alkali metal adduct (Ar?M+). The anolyte solution undergoes electrolytic decarboxylation to form an alkyl radical. The alkyl radical reacts with the aryl compound to produce the aryl-alkyl hydrocarbon.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: June 9, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Pallavi Chitta
  • Publication number: 20150060296
    Abstract: A method for upgrading bio-mass material is provided. The method involves electrolytic reduction of the material in an electrochemical cell having a ceramic, oxygen-ion conducting membrane, where the membrane includes an electrolyte. One or more oxygenated or partially-oxygenated compounds are reduced by applying an electrical potential to the electrochemical cell. A system for upgrading bio-mass material is also disclosed.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Elangovan, Mukund Karanjikar
  • Publication number: 20140360866
    Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Publication number: 20140336418
    Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
    Type: Application
    Filed: July 2, 2014
    Publication date: November 13, 2014
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Publication number: 20140331545
    Abstract: A method for upgrading pyrolysis oil into a hydrocarbon fuel involves obtaining a quantity of pyrolysis oil, separating the pyrolysis oil into an organic phase and an aqueous phase, and then upgrading the organic phase into a hydrocarbon fuel by reacting the organic phase with hydrogen gas using a catalyst. The catalyst used in the reaction includes a support material, an active metal and a zirconia promoter material. The support material may be alumina, silica gel, carbon, silicalite or a zeolite material. The active metal may be copper, iron, nickel or cobalt. The zirconia promoter material may be zirconia itself, zirconia doped with Y, zirconia doped with Sc and zirconia doped with Yb.
    Type: Application
    Filed: July 1, 2014
    Publication date: November 13, 2014
    Inventors: Pallavi Chitta, Mukund Karanjikar
  • Patent number: 8853463
    Abstract: Ketones, specifically Methyl ethyl ketone (“MEK”) and octanedione, may be formed from six carbon sugars. This process involves obtaining a quantity of a six carbon sugar and then reacting the sugar to form levulinic acid and formic acid. The levulinic acid and formic acid are then converted to an alkali metal levulinate and an alkali metal formate (such as, for example, sodium levulinate and sodium formate.) The alkali metal levulinate is placed in an anolyte along with hydrogen gas that is used in an electrolytic cell. The alkali metal levulinate within the anolyte is decarboxylated to form MEK radicals, wherein the MEK radicals react with hydrogen gas to form MEK, or MEK radicals react with each other to form octanedione. The alkali metal formate may also be decarboxylated in the cell, thereby forming hydrogen radicals that react with the MEK radicals to form MEK.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Mukund Karanjikar, Sai Bhavaraju
  • Publication number: 20140251821
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 11, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 8821710
    Abstract: Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 2, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Publication number: 20140171688
    Abstract: Ketones, specifically Methyl ethyl ketone (“MEK”) and octanedione, may be formed from six carbon sugars. This process involves obtaining a quantity of a six carbon sugar and then reacting the sugar to form levulinic acid and formic acid. The levulinic acid and formic acid are then converted to an alkali metal levulinate and an alkali metal formate (such as, for example, sodium levulinate and sodium formate.) The alkali metal levulinate is placed in an anolyte along with hydrogen gas that is used in an electrolytic cell. The alkali metal levulinate within the anolyte is decarboxylated to form MEK radicals, wherein the MEK radicals react with hydrogen gas to form MEK, or MEK radicals react with each other to form octanedione. The alkali metal formate may also be decarboxylated in the cell, thereby forming hydrogen radicals that react with the MEK radicals to form MEK.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Inventors: Mukund Karanjikar, Sai Bhavaraju
  • Publication number: 20140154766
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 5, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt