Patents by Inventor Mukund Karanjikar

Mukund Karanjikar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8647492
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: February 11, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt
  • Publication number: 20130284607
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventors: Sai Bhavaraju, Ashok V. Joshi, Mukund Karanjikar, David Joel Hunt, Pallavi Chitta
  • Publication number: 20130245347
    Abstract: A method for alkylating aromatic compounds is described using an electrochemical decarboxylation process. This process produces aryl-alkyl compounds that have properties useful in Group V lubricants (and other products) from abundant and economical carboxylic acids. The process presented here is also advantageous as it is conducted at moderate temperatures and conditions, without the need of a catalyst. The electrochemical decarboxylation has only H2 and CO2 as its by-products, as opposed to halide by-products.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: CERAMATEC, INC.
    Inventors: James Mosby, Patrick McGuire, Sai Bhavaraju, Mukund Karanjikar
  • Patent number: 8506789
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 13, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Ashok V. Joshi, David Joel Hunt, Pallavi Chitta
  • Publication number: 20130001095
    Abstract: A method that produces coupled radical products. The method involves obtaining a sodium salt of a carboxylic acid. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane) that separates an anolyte compartment housing the anolyte from a catholyte compartment housing a catholyte. The anolyte includes a first solvent or mixture of solvents and a quantity of the sodium salt of the carboxylic acid. When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Ashok V. Joshi, David Joel Hunt, Pallavi Chitta
  • Publication number: 20120304530
    Abstract: A method for upgrading pyrolysis oil into a hydrocarbon fuel involves obtaining a quantity of pyrolysis oil, separating the pyrolysis oil into an organic phase and an aqueous phase, and then upgrading the organic phase into a hydrocarbon fuel by reacting the organic phase with hydrogen gas using a catalyst. The catalyst used in the reaction includes a support material, an active metal and a zirconia promoter material. The support material may be alumina, silica gel, carbon, silicalite or a zeolite material. The active metal may be copper, iron, nickel or cobalt. The zirconia promoter material may be zirconia itself, zirconia doped with Y, zirconia doped with Sc and zirconia doped with Yb.
    Type: Application
    Filed: May 23, 2012
    Publication date: December 6, 2012
    Inventors: Pallavi Chitta, Mukund Karanjikar
  • Publication number: 20110226633
    Abstract: An aryl-alkyl (R—Ar) hydrocarbon is prepared by an electrosynthesis process in an electrolytic cell having an alkali ion conductive membrane positioned between an anolyte compartment configured with an anode and a catholyte compartment configured with a cathode. An anolyte solution containing an alkali metal salt of an alkyl carboxylic acid and an aryl compound is introduced into the anolyte compartment. The aryl compound may include an alkali metal salt of an aryl carboxylic acid, an arene (aromatic) hydrocarbon, or an aryl alkali metal adduct (Ar?M+). The anolyte solution undergoes electrolytic decarboxylation to form an alkyl radical. The alkyl radical reacts with the aryl compound to produce the aryl-alkyl hydrocarbon.
    Type: Application
    Filed: April 22, 2011
    Publication date: September 22, 2011
    Inventors: Sai Bhavaraju, Mukund Karanjikar
  • Publication number: 20110168569
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: July 21, 2010
    Publication date: July 14, 2011
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Ashok V. Joshi, David Joel Hunt, Pallavi Chitta
  • Publication number: 20110027848
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: July 21, 2010
    Publication date: February 3, 2011
    Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt
  • Publication number: 20110024288
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: July 21, 2010
    Publication date: February 3, 2011
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Ashok V. Joshi, David Joel Hunt, Pallavi Chitta