Patents by Inventor Murali Narasimhan

Murali Narasimhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6228186
    Abstract: Improved targets for use in DC_magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: May 8, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Keith J. Hansen, Glen Mori, Murali Narasimhan, Seshadri Ramaswami, Jaim Nulman
  • Patent number: 6171455
    Abstract: Improved targets for use in DC_magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: January 9, 2001
    Assignee: Applied Materials Inc.
    Inventors: Vikram Pavate, Keith J. Hansen, Glen Mori, Murali Narasimhan, Seshadri Ramaswami, Jaim Nulman
  • Patent number: 6139701
    Abstract: A copper sputtering target is provided for producing copper films having reduced in-film defect densities. In addition to reducing dielectric inclusion content of the copper target material, the hardness of the copper target is maintained within a range greater than 45 Rockwell. Within this range defect generation from arc-induced mechanical failure is reduced. Preferably hardness is achieved by limiting grain size to less than 50 microns, and most preferably to less than 25 microns. The surface roughness preferably is limited to less than 20 micro inches, or more preferably, less than 5 micro inches to reduce defect generation from field-enhanced emission. This grain size range preferably is achieved by limiting the purity level of the copper target material to a level less than 99.9999%, preferably within a range between 99.995% to 99.9999%, while reducing particular impurity levels.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: October 31, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Seshadri Ramaswami, Murali Abburi, Murali Narasimhan
  • Patent number: 6126791
    Abstract: Improved targets for use in DC.sub.-- magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: October 3, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Keith J. Hansen, Glen Mori, Murali Narasimhan, Seshadri Ramaswami, Jaim Nulman
  • Patent number: 6122921
    Abstract: The present invention provides a regeneration shield 22 for a vacuum system, typically used in the processing of integrated circuits. The regeneration shield protects fragile arrays 13, having a dislocatable material 16, such as charcoal, in a high vacuum pump 4 from volatile regeneration gases, which impinge the fragile material on the array and dislocate that material to cause pumping inefficiencies and scrap. The shield may be planar, concave, or convex and may have sides. The shield may also have inwardly and outwardly extending flanges.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: September 26, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Thomas Brezoczky, Murali Narasimhan
  • Patent number: 6077353
    Abstract: The invention generally provides an apparatus that reduces backside sputtering of the substrate in a pre-clean chamber and other etch chambers. The invention also provides an apparatus that reduces flaking of material from the film formed on the surfaces of the process kit and extends the specified lifetime of a process kit. One aspect of the invention provides an apparatus for supporting a substrate, comprising a support pedestal contacting a central portion of the substrate and an insulator surrounding the support pedestal, the insulator having a beveled portion extending from a circumferential edge of the substrate.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: June 20, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Mohamed A. Al-Sharif, Bradley O. Stimson, Debabrata Ghosh, Barney M. Cohen, Kenny King-Tai Ngan, Murali Narasimhan
  • Patent number: 6042700
    Abstract: A plasma chamber in a semiconductor fabrication system uses a two step process to sputter deposit material onto a substrate. The first step provides a power ratio of RF power to DC power optimized to increase uniformity of deposition of material onto a workpiece from a first target. A second step involves applying little to no DC power to the target, while an RF power is coupled into a plasma generation region to sputter material from a second target onto the workpiece. It has been found that material from the second target provides greater sidewall coverage of channels located on the workpiece, as well as increasing the uniformity of the deposit on the surface of the workpiece.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: March 28, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Murali Narasimhan
  • Patent number: 6001227
    Abstract: Improved targets for use in DC.sub.-- magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: December 14, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Keith J. Hansen, Glen Mori, Murali Narasimhan, Seshadri Ramaswami, Jaim Nulman