Patents by Inventor Murat Okandan

Murat Okandan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035853
    Abstract: Method and apparatus for annealing micro-scale or macro solar cells that can contain lithium. Heaters, a current that is applied in forward or reverse direction, or open-circuiting the cells are used optionally with a laser or other light source to increase the temperature of the cells to perform periodic anneals to recover energy conversion efficiency lost due to environmental conditions such as radiation damage and maintain desired operational conditions. While a small amount of energy is used for heating up the small thermal mass of the micro-cells and macro cells to the desired annealing temperature, much larger amounts of additional energy is harvested with the improved efficiency of the cells. Maintaining a desired temperature for operation of cells takes very little energy owing to the small thermal mass of the cells and controlled thermal conduction of the materials in contact with the cells.
    Type: Application
    Filed: July 30, 2019
    Publication date: January 30, 2020
    Inventors: Murat Okandan, Kaveh Rouhani
  • Patent number: 10483316
    Abstract: Curved, flexible arrays of radiation detectors are formed by using standard silicon semiconductor processing materials and techniques and additional functionalization through integration of conversion and shielding materials. The resulting flexible arrays can be handled, integrated, further functionalized and deployed for a wide variety of applications where conventional sensors do not provide the desired functionality, form factors and/or reliability. The arrays can be stacked and include multiple types and thicknesses of conversion layers, enabling the detector to simultaneously detect multiple radiation types, and perform complex, simultaneous functions such as energy discrimination, spectroscopy, directionality detection, and particle trajectory tracking of incident radiation.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 19, 2019
    Assignee: mPower Technology, Inc.
    Inventors: Murat Okandan, Markku Juhani Koskelo
  • Patent number: 10304977
    Abstract: A method, system and apparatus including a device cell having a top side, a bottom side and opposing side walls. A passivation layer is formed along the top side, the bottom side and opposing side walls of the device cell. The passivation layer serves to passivate the device cell and facilitate carrier collection around the device cell. An anti-reflective layer is formed over the passivation layer and an optical layer is formed on the top side of the device cell. The optical layer reflects light within the device cell. The apparatus may further include a reflective layer formed along the bottom side of the device cell, the reflective layer to reflect light internally within the device cell.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: May 28, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez
  • Patent number: 10243095
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 26, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180323324
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180323325
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 10038113
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 31, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180166598
    Abstract: High performance single crystal silicon cells and arrays thereof are manufactured using a rapid process flow. Tunneling junctions formed in the process provide performance benefits, such as higher efficiency and a lower power temperature coefficient. The process generates a large array of interconnected high performance cells smaller than typical cells without requiring additional process steps, and simplifies integration of these coupons into the final product. The cells can have different shapes, sizes, and orientations, enabling the array to be flexible in any desired direction. Higher efficiencies and lower hot spotting under shading is achieved by connecting small low current, high voltage cells in dense series and parallel configurations. Low current cells also require much less metallization than typical solar cells and arrays.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Applicant: mPower Technology, Inc.
    Inventors: Murat Okandan, Jose Luis Cruz-Campa
  • Patent number: 9978895
    Abstract: An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling the protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 22, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Benjamin John Anderson, Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Anthony L. Lentine, Paul J. Resnick
  • Patent number: 9972736
    Abstract: An apparatus, method, and system, the apparatus including a receiving member dimensioned to receive an array of microelectronic devices; and a linkage member coupled to the receiving member, the linkage member configured to move the receiving member in at least two dimensions so as to modify a spacing between the electronic devices within the array of microelectronic devices received by the receiving member. The method including coupling an array of microelectronic devices to an expansion assembly; and expanding the expansion assembly so as to expand the array of microelectronic devices in at least two directions within a single plane. The system including a support member; an expansion assembly coupled to the support member, the expansion assembly having a plurality of receiving members configured to move in at least two dimensions within a single plane; and a plurality of microelectronic devices coupled to each of the plurality of receiving members.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 15, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey P. Koplow, Vipin P. Gupta, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Jeffrey S. Nelson
  • Patent number: 9907496
    Abstract: The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: March 6, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Murat Okandan, Gregory N. Nielson
  • Patent number: 9911871
    Abstract: A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: March 6, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Ronald S. Goeke
  • Patent number: 9831369
    Abstract: A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 28, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Anna Tauke-Pedretti, Jose Luis Cruz-Campa, Murat Okandan
  • Patent number: 9761748
    Abstract: A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: September 12, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Gregory N. Nielson, William C. Sweatt, Murat Okandan
  • Patent number: 9763370
    Abstract: An apparatus including a carrier substrate configured to move a microelectronic device. The apparatus further includes a rotatable body configured to receive the microelectronic device. Additionally, the apparatus includes a second substrate configured to receive the microelectronic device from the rotatable body.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: September 12, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Judith Maria Lavin, Paul J. Resnick
  • Patent number: 9748415
    Abstract: A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality of metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 29, 2017
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Carlos Anthony Sanchez
  • Publication number: 20170200762
    Abstract: Curved, flexible arrays of radiation detectors are formed by using standard silicon semiconductor processing materials and techniques and additional functionalization through integration of conversion and shielding materials. The resulting flexible arrays can be handled, integrated, further functionalized and deployed for a wide variety of applications where conventional sensors do not provide the desired functionality, form factors and/or reliability. The arrays can be stacked and include multiple types and thicknesses of conversion layers, enabling the detector to simultaneously detect multiple radiation types, and perform complex, simultaneous functions such as energy discrimination, spectroscopy, directionality detection, and particle trajectory tracking of incident radiation.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 13, 2017
    Inventors: Murat Okandan, Markku Juhani Koskelo
  • Publication number: 20170162724
    Abstract: A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality of metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.
    Type: Application
    Filed: November 23, 2016
    Publication date: June 8, 2017
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Carlos Anthony Sanchez
  • Patent number: 9660026
    Abstract: There is provided an electronic device and a method for its manufacture. The device comprises an elongate silicon nanowire less than 0.5 ?m in cross-sectional dimensions and having a hexagonal cross-sectional shape due to annealing-induced energy relaxation. The method, in examples, includes thinning the nanowire through iterative oxidation and etching of the oxidized portion.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 23, 2017
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Bruce L. Draper, Paul J. Resnick
  • Patent number: 9595628
    Abstract: A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 ?m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: March 14, 2017
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Mark S. Derzon, Bruce L. Draper