Patents by Inventor Murat Okandan

Murat Okandan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9222810
    Abstract: A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: December 29, 2015
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Darwin K. Serkland, Bion J. Merchant
  • Publication number: 20150340542
    Abstract: A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.
    Type: Application
    Filed: July 9, 2015
    Publication date: November 26, 2015
    Inventors: Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Jeffrey S. Nelson, Benjamin John Anderson
  • Patent number: 9190546
    Abstract: A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 17, 2015
    Assignee: Sandia Corporation
    Inventors: Benjamin J. Anderson, William C. Sweatt, Murat Okandan, Gregory N. Nielson
  • Patent number: 9141413
    Abstract: Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: September 22, 2015
    Assignee: Sandia Corporation
    Inventors: Jose Luis Cruz-Campa, Gregory N. Nielson, Ralph W. Young, Paul J. Resnick, Murat Okandan, Vipin P. Gupta
  • Patent number: 9143053
    Abstract: Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: September 22, 2015
    Assignees: Sandia Corporation, The Board of Trustees of the University of Illinois
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Murat Okandan, Brian Benjamin Johnson, Philip T. Krein
  • Patent number: 9126392
    Abstract: A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 8, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Paul J. Resnick, Carlos Anthony Sanchez, Peggy J. Clews, Vipin P. Gupta
  • Patent number: 9130092
    Abstract: A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: September 8, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Vipin P. Gupta, Murat Okandan, Michael R. Watts
  • Patent number: 9112100
    Abstract: A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: August 18, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Jeffrey S. Nelson, Benjamin John Anderson
  • Publication number: 20150221627
    Abstract: An apparatus is disclosed that includes a first plurality of devices made of a group III-V semiconductor material and a second plurality of devices made of a semiconductor material different than the material of the first plurality of devices that are bonded to the first plurality of devices. The apparatus also includes a dielectric layer surrounding the first plurality of devices and the second plurality of devices to mechanically bond the first plurality of devices to the second plurality of devices.
    Type: Application
    Filed: September 25, 2013
    Publication date: August 6, 2015
    Inventors: Gregory N. Nielson, Carlos Anthony Sanchez, Anna Tauke-Pedretti, Bonsang Kim, Jeffrey Cederberg, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick
  • Patent number: 9093586
    Abstract: A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 28, 2015
    Assignee: Sandia Corporation
    Inventors: Anthony L. Lentine, Murat Okandan, Gregory N. Nielson
  • Publication number: 20150207023
    Abstract: A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 23, 2015
    Applicant: SANDIA CORPORATION
    Inventors: Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Jeffrey S. Nelson, Benjamin John Anderson
  • Patent number: 9029681
    Abstract: A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 12, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, William C. Sweatt, Murat Okandan
  • Publication number: 20150114451
    Abstract: An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling the protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Sandia Corporation
    Inventors: Benjamin John Anderson, Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Anthony L. Lentine, Paul J. Resnick
  • Publication number: 20150114444
    Abstract: A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: Sandia Corporation
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Anna Tauke-Pedretti, Joseq Luis Cruz-Campa, Murat Okandan
  • Publication number: 20150068584
    Abstract: A photovoltaic system is described herein. The photovoltaic system includes an array of micro-concentrators. Each micro-concentrator includes an exterior lens, an interior lens, and a transparent layer that is between the exterior lens and the interior lens. The array of micro-concentrators is optically aligned with an array of photovoltaic cells.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 12, 2015
    Inventors: William C. Sweatt, Bradley Howell Jared, Michael P. Saavedra, Benjamin John Anderson, Ronald S. Goeke, Gregory N. Nielson, Murat Okandan, Brenton Elisberg
  • Patent number: 8946052
    Abstract: A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Carlos Anthony Sanchez, Anna Tauke-Pedretti, Bongsang Kim, Jeffrey Cederberg, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick
  • Patent number: 8906803
    Abstract: Accessing a workpiece object in semiconductor processing is disclosed. The workpiece object includes a mechanical support substrate, a release layer over the mechanical support substrate, and an integrated circuit substrate coupled over the release layer. The integrated circuit substrate includes a device layer having semiconductor devices. The method also includes etching through-substrate via (TSV) openings through the integrated circuit substrate that have buried ends at or within the release layer including using the release layer as an etch stop. TSVs are formed by introducing one or more conductive materials into the TSV openings. A die singulation trench is etched at least substantially through the integrated circuit substrate around a perimeter of an integrated circuit die. The integrated circuit die is at least substantially released from the mechanical support substrate.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: December 9, 2014
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Gregory N. Nielson
  • Patent number: 8895364
    Abstract: A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: November 25, 2014
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Gregory N. Nielson
  • Publication number: 20140261624
    Abstract: Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.
    Type: Application
    Filed: October 30, 2013
    Publication date: September 18, 2014
    Applicant: Sandia Corporation
    Inventors: Jose Luis Cruz-Campa, Gregory N. Nielson, Murat Okandan, Anthony L. Lentine, Paul J. Resnick, Vipin P. Gupta
  • Publication number: 20140265998
    Abstract: Described herein are various technologies pertaining to provision of energy to a rechargeable battery of a mobile electronic device. The mobile electronic device has an array of photovoltaic cells embedded therein or affixed thereto. The array of photovoltaic cells is electrically connected to the rechargeable battery of the mobile electronic device. A charging pad includes an array of optical emitters, which are configured to emit light when the mobile electronic device rests on or adjacent to the charging pad. A remotely situated light source acts as a luminaire and emits a directed beam of light towards the mobile electronic device to provide energy to the rechargeable battery.
    Type: Application
    Filed: October 24, 2013
    Publication date: September 18, 2014
    Applicant: Sandia Corporation
    Inventors: Gregory N. Nielson, Murat Okandan, Jeffrey S. Nelson, Jose Luis Cruz-Campa, Vipin P. Gupta