Patents by Inventor Nader Shamma

Nader Shamma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12094711
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively with an etch selectivity of at least 10 in a presence of silicon (Si), carbon (C), or a carbon-containing material (e.g., photoresist) by exposing the substrate to a process gas comprising hydrogen (H2) and a hydrocarbon (e.g., at a hydrogen/hydrocarbon ratio of at least 5), such that a carbon-containing polymer is formed on the substrate. In some embodiments an apparatus for processing a semiconductor substrate includes a process chamber configured for housing the semiconductor substrate and a controller having program instructions on a non-transitory medium for causing selective etching of a tin oxide layer on a substrate in a presence of silicon, carbon, or a carbon-containing material by exposing the substrate to a plasma formed in a process gas that includes H2 and a hydrocarbon.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: September 17, 2024
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20220270877
    Abstract: A method of processing a substrate includes: providing a substrate having one or more mandrels comprising a mandrel material, wherein a layer of a spacer material coats horizontal surfaces and sidewalls of the one or more mandrels; and etching and completely removing the layer of the spacer material from the horizontal surfaces of the one or more mandrels and thereby exposing the mandrel material, without completely removing the spacer material residing at the sidewalls of the one or more mandrels. The etching includes exposing the substrate to a plasma formed using a mixture comprising a first gas and a polymer-forming gas, and wherein the etching comprises forming a polymer on the substrate. Polymer-forming gas may include carbon (C) and hydrogen (H).
    Type: Application
    Filed: February 10, 2022
    Publication date: August 25, 2022
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20220197147
    Abstract: A method for patterning a substrate includes providing a substrate, and depositing a multi-layer stack including N layers on the substrate. N is an integer greater than one. The N layers include N mean free paths for secondary electrons, respectively. The method includes depositing a photoresist layer on the multi-layer stack, wherein the N mean free paths converge in the photoresist layer. Another method for patterning a substrate includes providing a substrate and depositing a layer on the substrate. The layer includes varying mean free paths for secondary electrons. The method includes depositing a photoresist layer on the layer. The varying mean free paths for secondary electrons converge in the photoresist layer.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 23, 2022
    Inventors: Andrew LIANG, Nader SHAMMA, Rich WISE, Akhil SINGHAL, Arpan Pravin MAHOROWALA, Gregory BLACHUT, Dustin Zachary AUSTIN
  • Publication number: 20220165571
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively with an etch selectivity of at least 10 in a presence of silicon (Si), carbon (C), or a carbon-containing material (e.g., photoresist) by exposing the substrate to a process gas comprising hydrogen (H2) and a hydrocarbon (e.g., at a hydrogen/hydrocarbon ratio of at least 5), such that a carbon-containing polymer is formed on the substrate. In some embodiments an apparatus for processing a semiconductor substrate includes a process chamber configured for housing the semiconductor substrate and a controller having program instructions on a non-transitory medium for causing selective etching of a tin oxide layer on a substrate in a presence of silicon, carbon, or a carbon-containing material by exposing the substrate to a plasma formed in a process gas that includes H2 and a hydrocarbon.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Patent number: 11322351
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively in a presence of silicon (Si), carbon (C), or a carbon-containing material (e.g., photoresist) by exposing the substrate to a process gas comprising hydrogen (H2) and a hydrocarbon. The hydrocarbon significantly improves the etch selectivity. In some embodiments an apparatus for processing a semiconductor substrate includes a process chamber configured for housing the semiconductor substrate and a controller having program instructions on a non-transitory medium for causing selective etching of a tin oxide layer on a substrate in a presence of silicon, carbon, or a carbon-containing material by exposing the substrate to a plasma formed in a process gas that includes H2 and a hydrocarbon.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20220122846
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha S.H. Tan
  • Patent number: 11257674
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 22, 2022
    Assignee: Lam Research Corporation
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Publication number: 20210265163
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively in a presence of photoresist by exposing the substrate to at least one of hydrogen-based chemistry and chlorine-based chemistry. In some implementations, a method of processing a semiconductor substrate starts by providing a semiconductor substrate having a patterned photoresist layer overlying a tin oxide layer. Next, openings are etched in the tin oxide layer using the patterned photoresist layer as a mask, and using at least one of a hydrogen-based etch chemistry and a chlorine-based etch chemistry. After the openings have been etched in the tin oxide layer, the photoresist layer is removed using an oxygen-based etch chemistry.
    Type: Application
    Filed: May 13, 2021
    Publication date: August 26, 2021
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Patent number: 11048174
    Abstract: A method, and associated apparatus and computer program, to determine corrections for a parameter of interest, such as critical dimension, of a patterning process. The method includes determining an exposure control correction for an exposure control parameter and, optionally, determining a process control correction for a process control parameter, based upon a measurement of the parameter of interest of a structure, and an exposure control relationship and a process control relationship. The exposure control relationship describes the dependence of the parameter of interest on the exposure control parameter and the process control relationship describes the dependence of the parameter of interest on the process control parameter. The exposure control correction and process control correction may be co-optimized to minimize variation of the parameter of interest of subsequent exposed and processed structures relative to a target parameter of interest.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 29, 2021
    Assignees: ASML Netherlands B.V., LAM Research Corporation
    Inventors: Michael Kubis, Marinus Jochemsen, Richard Stephen Wise, Nader Shamma, Girish Anant Dixit, Liesbeth Reijnen, Ekaterina Mikhailovna Viatkina, Melisa Luca, Johannes Catharinus Hubertus Mulkens
  • Patent number: 11031244
    Abstract: A method for improving EUV lithographic patterning of SnO2 layers is provided. One method embodiment includes introducing a hydrophobic surface treatment compound into a processing chamber for modifying a surface of an SnO2 layer. The modification increases the hydrophobicity of the SnO2 layer. The method also provides for depositing a photoresist layer on the surface of the SnO2 layer via spin coating. The modification of the surface of the SnO2 layer enhances adhesion of contact between the photoresist and the SnO2 layer during and after spin coating.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: June 8, 2021
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Nader Shamma, Dustin Zachary Austin
  • Publication number: 20200402801
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Patent number: 10796912
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: October 6, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Publication number: 20200233311
    Abstract: A method, and associated apparatus and computer program, to determine corrections for a parameter of interest, such as critical dimension, of a patterning process. The method includes determining an exposure control correction for an exposure control parameter and, optionally, determining a process control correction for a process control parameter, based upon a measurement of the parameter of interest of a structure, and an exposure control relationship and a process control relationship. The exposure control relationship describes the dependence of the parameter of interest on the exposure control parameter and the process control relationship describes the dependence of the parameter of interest on the process control parameter. The exposure control correction and process control correction may be co-optimized to minimize variation of the parameter of interest of subsequent exposed and processed structures relative to a target parameter of interest.
    Type: Application
    Filed: February 16, 2017
    Publication date: July 23, 2020
    Inventors: Michael KUBIS, Marinus JOCHEMSEN, Richard Stephen WISE, Nader SHAMMA, Girish Anant DIXIT, Liesbeth REIJNEN, Ekaterina Mikhailovna VIATKINA, Melisa LUCA, Johannes Catharinus Hubertus MULKENS
  • Patent number: 10685836
    Abstract: Methods of and apparatuses for processing substrates having carbon-containing material using atomic layer etch and selective deposition are provided. Methods involve exposing a carbon-containing material on a substrate to an oxidant and igniting a first plasma to modify a surface of the substrate and exposing the modified surface to a second plasma at a bias power to remove the modified surface. Methods also involve selectively depositing a second carbon-containing material onto the substrate using a precursor having a chemical formula of CxHy, where x and y are integers greater than or equal to 1. ALE and selective deposition may be performed without breaking vacuum.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 16, 2020
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Jengyi Yu, Richard Wise, Nader Shamma, Yang Pan
  • Publication number: 20200083044
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively in a presence of silicon (Si), carbon (C), or a carbon-containing material (e.g., photoresist) by exposing the substrate to a process gas comprising hydrogen (H2) and a hydrocarbon. The hydrocarbon significantly improves the etch selectivity. In some embodiments an apparatus for processing a semiconductor substrate includes a process chamber configured for housing the semiconductor substrate and a controller having program instructions on a non-transitory medium for causing selective etching of a tin oxide layer on a substrate in a presence of silicon, carbon, or a carbon-containing material by exposing the substrate to a plasma formed in a process gas that includes H2 and a hydrocarbon.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20200058492
    Abstract: A method for improving EUV lithographic patterning of SnO2 layers is provided. One method embodiment includes introducing a hydrophobic surface treatment compound into a processing chamber for modifying a surface of an SnO2 layer. The modification increases the hydrophobicity of the SnO2 layer. The method also provides for depositing a photoresist layer on the surface of the SnO2 layer via spin coating. The modification of the surface of the SnO2 layer enhances adhesion of contact between the photoresist and the SnO2 layer during and after spin coating.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Inventors: Akhil Singhal, Nader Shamma, Dustin Zachary Austin
  • Patent number: 10546748
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer is formed conformally over sidewalls and horizontal surfaces of protruding features on a substrate. A passivation layer is then formed over tin oxide on the sidewalls, and tin oxide is then removed from the horizontal surfaces of the protruding features without being removed at the sidewalls of the protruding features. The material of the protruding features is then removed while leaving the tin oxide that resided at the sidewalls of the protruding features, thereby forming tin oxide spacers. Hydrogen-based and chlorine-based dry etch chemistries are used to selectively etch tin oxide in a presence of a variety of materials. In another method a patterned tin oxide hardmask layer is formed on a substrate by forming a patterned layer over an unpatterned tin oxide and transferring the pattern to the tin oxide.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 28, 2020
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Patent number: 10438807
    Abstract: Provided herein are methods and related apparatus to smooth the edges of features patterned using extreme ultraviolet (EUV) lithography. In some embodiments, at least one cycle of depositing passivation layer that preferentially collects in crevices of a feature leaving protuberances exposed, and etching the feature to remove the exposed protuberances, thereby smoothing the feature, is performed. The passivation material may preferentially collect in the crevices due to a higher surface to volume ratio in the crevices than in the protuberances. In some embodiments, local critical dimension uniformity (LCDU), a measure of roughness in contact holes, is reduced. In some embodiments, at least one cycle of depositing a thin layer in a plurality of holes formed in photoresist, the holes having different CDs, wherein the thin layer preferentially deposits in the larger CD holes, and anisotropically removing the thin layer to remove it at the bottoms of the holes, is performed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: October 8, 2019
    Assignee: Lam Research Corporation
    Inventors: Richard Wise, Nader Shamma
  • Publication number: 20190244805
    Abstract: Methods of and apparatuses for processing substrates having carbon-containing material using atomic layer etch and selective deposition are provided. Methods involve exposing a carbon-containing material on a substrate to an oxidant and igniting a first plasma to modify a surface of the substrate and exposing the modified surface to a second plasma at a bias power to remove the modified surface. Methods also involve selectively depositing a second carbon-containing material onto the substrate using a precursor having a chemical formula of CxHy, where x and y are integers greater than or equal to 1. ALE and selective deposition may be performed without breaking vacuum.
    Type: Application
    Filed: March 21, 2019
    Publication date: August 8, 2019
    Inventors: Samantha Tan, Jengyi Yu, Richard Wise, Nader Shamma, Yang Pan
  • Patent number: 10269566
    Abstract: Methods of and apparatuses for processing substrates having carbon-containing material using atomic layer deposition and selective deposition are provided. Methods involve exposing a carbon-containing material on a substrate to an oxidant and igniting a first plasma at a first bias power to modify a surface of the substrate and exposing the modified surface to an inert plasma at a second bias power to remove the modified surface. Methods also involve selectively depositing a second carbon-containing material onto the substrate. ALE and selective deposition may be performed without breaking vacuum.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 23, 2019
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Jengyi Yu, Richard Wise, Nader Shamma, Yang Pan