Patents by Inventor Nader Shamma

Nader Shamma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10192759
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: January 29, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Nader Shamma, Bart J. van Schravendijk, Sirish K. Reddy, Chunhai Ji
  • Publication number: 20180337046
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 22, 2018
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Publication number: 20180240667
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer is formed conformally over sidewalls and horizontal surfaces of protruding features on a substrate. A passivation layer is then formed over tin oxide on the sidewalls, and tin oxide is then removed from the horizontal surfaces of the protruding features without being removed at the sidewalls of the protruding features. The material of the protruding features is then removed while leaving the tin oxide that resided at the sidewalls of the protruding features, thereby forming tin oxide spacers. Hydrogen-based and chlorine-based dry etch chemistries are used to selectively etch tin oxide in a presence of a variety of materials. In another method a patterned tin oxide hardmask layer is formed on a substrate by forming a patterned layer over an unpatterned tin oxide and transferring the pattern to the tin oxide.
    Type: Application
    Filed: February 12, 2018
    Publication date: August 23, 2018
    Inventors: Jengyi Yu, Samantha Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20180190503
    Abstract: Provided herein are methods and related apparatus to smooth the edges of features patterned using extreme ultraviolet (EUV) lithography. In some embodiments, at least one cycle of depositing passivation layer that preferentially collects in crevices of a feature leaving protuberances exposed, and etching the feature to remove the exposed protuberances, thereby smoothing the feature, is performed. The passivation material may preferentially collect in the crevices due to a higher surface to volume ratio in the crevices than in the protuberances. In some embodiments, local critical dimension uniformity (LCDU), a measure of roughness in contact holes, is reduced. In some embodiments, at least one cycle of depositing a thin layer in a plurality of holes formed in photoresist, the holes having different CDs, wherein the thin layer preferentially deposits in the larger CD holes, and anisotropically removing the thin layer to remove it at the bottoms of the holes, is performed.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Inventors: Richard Wise, Nader Shamma
  • Publication number: 20180158683
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 7, 2018
    Applicant: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Patent number: 9922839
    Abstract: Provided herein are methods and related apparatus to smooth the edges of features patterned using extreme ultraviolet (EUV) lithography. In some embodiments, at least one cycle of depositing passivation layer that preferentially collects in crevices of a feature leaving protuberances exposed, and etching the feature to remove the exposed protuberances, thereby smoothing the feature, is performed. The passivation material may preferentially collect in the crevices due to a higher surface to volume ratio in the crevices than in the protuberances. In some embodiments, local critical dimension uniformity (LCDU), a measure of roughness in contact holes, is reduced. In some embodiments, at least one cycle of depositing a thin layer in a plurality of holes formed in photoresist, the holes having different CDs, wherein the thin layer preferentially deposits in the larger CD holes, and anisotropically removing the thin layer to remove it at the bottoms of the holes, is performed.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: March 20, 2018
    Assignee: Lam Research Corporation
    Inventors: Richard Wise, Nader Shamma
  • Patent number: 9905423
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 27, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Publication number: 20170316935
    Abstract: Methods of and apparatuses for processing substrates having carbon-containing material using atomic layer deposition and selective deposition are provided. Methods involve exposing a carbon-containing material on a substrate to an oxidant and igniting a first plasma at a first bias power to modify a surface of the substrate and exposing the modified surface to an inert plasma at a second bias power to remove the modified surface. Methods also involve selectively depositing a second carbon-containing material onto the substrate. ALE and selective deposition may be performed without breaking vacuum.
    Type: Application
    Filed: April 21, 2017
    Publication date: November 2, 2017
    Inventors: Samantha Tan, Jengyi Yu, Richard Wise, Nader Shamma, Yang Pan
  • Patent number: 9618846
    Abstract: Provided herein are multi-layer stacks for use in extreme ultraviolet lithography tailored to achieve optimum etch contrast to shrink features and smooth the edges of features while enabling use of an optical leveling sensor with little or reduced error. The multi-layer stacks may include an atomically smooth layer with an average local roughness of less than a monolayer, and one or more underlayers, which may be between a target layer to be patterned and a photoresist. Also provided are methods of depositing multi-layer stacks for use in extreme ultraviolet lithography.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: April 11, 2017
    Assignee: Lam Research Corporation
    Inventors: Nader Shamma, Thomas Mountsier, Donald Schlosser
  • Publication number: 20160379824
    Abstract: Provided herein are methods and related apparatus to smooth the edges of features patterned using extreme ultraviolet (EUV) lithography. In some embodiments, at least one cycle of depositing passivation layer that preferentially collects in crevices of a feature leaving protuberances exposed, and etching the feature to remove the exposed protuberances, thereby smoothing the feature, is performed. The passivation material may preferentially collect in the crevices due to a higher surface to volume ratio in the crevices than in the protuberances. In some embodiments, local critical dimension uniformity (LCDU), a measure of roughness in contact holes, is reduced. In some embodiments, at least one cycle of depositing a thin layer in a plurality of holes formed in photoresist, the holes having different CDs, wherein the thin layer preferentially deposits in the larger CD holes, and anisotropically removing the thin layer to remove it at the bottoms of the holes, is performed.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 29, 2016
    Inventors: Richard Wise, Nader Shamma
  • Publication number: 20160293418
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Application
    Filed: June 8, 2016
    Publication date: October 6, 2016
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Publication number: 20160254171
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Nader Shamma, Bart J. van Schravendijk, Sirish K. Reddy, Chunhai Ji
  • Patent number: 9390909
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 12, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish Dixit
  • Publication number: 20160179005
    Abstract: Provided herein are multi-layer stacks for use in extreme ultraviolet lithography tailored to achieve optimum etch contrast to shrink features and smooth the edges of features while enabling use of an optical leveling sensor with little or reduced error. The multi-layer stacks may include an atomically smooth layer with an average local roughness of less than a monolayer, and one or more underlayers, which may be between a target layer to be patterned and a photoresist. Also provided are methods of depositing multi-layer stacks for use in extreme ultraviolet lithography.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 23, 2016
    Inventors: Nader Shamma, Thomas Mountsier, Donald Schlosser
  • Patent number: 9362133
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: June 7, 2016
    Assignee: Lam Research Corporation
    Inventors: Nader Shamma, Bart van Schravendijk, Sirish Reddy, Chunhai Ji
  • Patent number: 9304396
    Abstract: Provided herein are multi-layer stacks for use in extreme ultraviolet lithography tailored to achieve optimum etch contrast to shrink features and smooth the edges of features while enabling use of an optical leveling sensor with little or reduced error. The multi-layer stacks may include an atomically smooth layer with an average local roughness of less than a monolayer, and one or more underlayers, which may be between a target layer to be patterned and a photoresist. Also provided are methods of depositing multi-layer stacks for use in extreme ultraviolet lithography.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: April 5, 2016
    Assignee: Lam Research Corporation
    Inventors: Nader Shamma, Thomas Mountsier, Don Schlosser
  • Publication number: 20150126042
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Application
    Filed: February 28, 2014
    Publication date: May 7, 2015
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish Dixit
  • Publication number: 20140239462
    Abstract: Provided herein are multi-layer stacks for use in extreme ultraviolet lithography tailored to achieve optimum etch contrast to shrink features and smooth the edges of features while enabling use of an optical leveling sensor with little or reduced error. The multi-layer stacks may include an atomically smooth layer with an average local roughness of less than a monolayer, and one or more underlayers, which may be between a target layer to be patterned and a photoresist. Also provided are methods of depositing multi-layer stacks for use in extreme ultraviolet lithography.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 28, 2014
    Inventors: Nader Shamma, Thomas Mountsier, Donald Schlosser
  • Publication number: 20140170853
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 19, 2014
    Inventors: Nader Shamma, Bart van Schravendijk, Sirish Reddy, Chunhai Ji
  • Publication number: 20050057754
    Abstract: Properties of thin electrically conductive films are measured using plasmons. The plasmons are excited in the film using a suitable pump beam of electromagnetic radiation. A probe beam of electromagnetic radiation is directed onto the excited film and is diffracted thereby and the diffracted beam is detected. The detected signal indicates film properties such as thickness and surface roughness.
    Type: Application
    Filed: July 8, 2004
    Publication date: March 17, 2005
    Inventors: David Smith, Behzad Imani, Nader Shamma, Patrick Maxton, Mark Brongersma