Patents by Inventor Nae-In Lee

Nae-In Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6881650
    Abstract: A method for forming SOI substrates including a SOI layer containing germanium and a strained silicon layer disposed on the SOI layer, comprises forming a relaxed silicon-germanium layer on a first silicon substrate using an epitaxial growth method, and forming a porous silicon-germanium layer thereon. A silicon-germanium epitaxial layer is formed on the porous silicon-germanium layer, an oxide layer is formed on a second silicon substrate, the second silicon substrate is bonded where the oxide layer is formed to the first silicon substrate where the silicon-germanium epitaxial layer is formed. Layers are removed to expose the silicon-germanium epitaxial layer and a strained silicon epitaxial layer is formed thereon. The porous silicon-germanium layer prevents lattice defects of the relaxed silicon-germanium layer from transferring to the silicon-germanium epitaxial layer. Therefore, it is possible to form the silicon-germanium layer and the strained silicon layer of the SOI layer without defects.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: April 19, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Il Lee, Kazuyuki Fujihara, Nae-In Lee, Geum-Jong Bae, Hwa-Sung Rhee, Sang-su Kim
  • Patent number: 6878580
    Abstract: A semiconductor device having a gate with a negative slope and a method of manufacturing the same. A poly-SiGe layer with a Ge density profile which decreases linearly from the bottom of the gate toward the top of the gate is formed and a poly-SiGe gate having a negative slope is formed by patterning the poly-SiGe layer. It is possible to form a gate whose bottom is shorter than its top defined by photolithography by taking advantage of the variation of etching characteristics with Ge density when patterning. Accordingly, the gate is compact enough for a short channel device and gate resistance can be reduced.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: April 12, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-jong Bae, Nae-in Lee, Ki-chul Kim, Hwa-sung Rhee, Sang-su Kim, Jung-il Lee
  • Publication number: 20050074982
    Abstract: A multi-layer dielectric layer structure for a semiconductor device. The multi-layer dielectric layer structure comprises a silicate interface layer having a dielectric constant greater than that of silicon nitride and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises one or more ordered pairs of first and second layers. With the present invention, the dielectric constant of the high-k dielectric layer can be optimized while improving interface characteristics. With a higher crystallization temperature realized by forming the multi-layer structure, each of whose layers is not more than the critical thickness, leakage current can be reduced, thereby improving device performance.
    Type: Application
    Filed: November 29, 2004
    Publication date: April 7, 2005
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jongho Lee, Nae-In Lee
  • Patent number: 6875678
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: April 5, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim
  • Publication number: 20050048702
    Abstract: A local SONOS structure having a two-piece gate and a self-aligned ONO structure includes: a substrate; an ONO structure on the substrate; a first gate layer on and aligned with the ONO structure; a gate insulator on the substrate aside the ONO structure; and a second gate layer on the first gate layer and on the gate insulator. The first and second gate layers are electrically connected together. Together, the ONO structure and first and second gate layers define at least a 1-bit local SONOS structure. A corresponding method of manufacture includes: providing a substrate; forming an ONO structure on the substrate; forming a first gate layer on and aligned with the ONO structure; forming a gate insulator on the substrate aside the ONO structure; forming a second gate layer on the first gate layer and on the gate insulator; and electrically connecting the first and second gate layers.
    Type: Application
    Filed: September 30, 2004
    Publication date: March 3, 2005
    Inventors: Geum-Jong Bae, Nae-In Lee, Sang Kim, Ki Kim, Jin-Hee Kim, In-Wook Cho, Sung-Ho Kim, Kwang-Wook Koh
  • Publication number: 20050037630
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Application
    Filed: September 10, 2003
    Publication date: February 17, 2005
    Inventors: Seok-Joo Doh, Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim
  • Patent number: 6844604
    Abstract: A multi-layer dielectric layer structure for a semiconductor device. The multi-layer dielectric layer structure comprises a silicate interface layer having a dielectric constant greater than that of silicon nitride and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises one or more ordered pairs of first and second layers. With the present invention, the dielectric constant of the high-k dielectric layer can be optimized while improving interface characteristics. With a higher crystallization temperature realized by forming the multi-layer structure, each of whose layers is not more than the critical thickness, leakage current can be reduced, thereby improving device performance.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 18, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongho Lee, Nae-In Lee
  • Patent number: 6815764
    Abstract: A local SONOS structure having a two-piece gate and a self-aligned ONO structure includes: a substrate; an ONO structure on the substrate; a first gate layer on and aligned with the ONO structure; a gate insulator on the substrate aside the ONO structure; and a second gate layer on the first gate layer and on the gate insulator. The first and second gate layers are electrically connected together. Together, the ONO structure and first and second gate layers define at least a 1-bit local SONOS structure. A corresponding method of manufacture includes: providing a substrate; forming an ONO structure on the substrate; forming a first gate layer on and aligned with the ONO structure; forming a gate insulator on the substrate aside the ONO structure; forming a second gate layer on the first gate layer and on the gate insulator; and electrically connecting the first and second gate layers.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: November 9, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-Jong Bae, Nae-In Lee, Sang Su Kim, Ki Chul Kim, Jin-Hee Kim, In-Wook Cho, Sung-Ho Kim, Kwang-Wook Koh
  • Publication number: 20040207003
    Abstract: Byte-operational nonvolatile semiconductor memory devices are capable of erasing stored data one byte at a time. A byte memory cell may include a memory cell array of 1-byte memory transistors. The 1-byte memory transistors may be arranged in one direction, each including a junction region and a channel region formed in an active region. A byte memory cell may include a byte select transistor. The select transistor may be disposed in the active region and including a junction region that is directly adjacent to a junction of each of the 1-byte memory transistors. The byte select transistor may be disposed over or under the 1-byte memory transistors perpendicular to the arranged direction of the 1-byte memory transistors.
    Type: Application
    Filed: March 25, 2004
    Publication date: October 21, 2004
    Inventors: Sung-ho Kim, Nae-in Lee, Kwang-wook Koh, Geum-jong Bae, Ki-chul Kim, Jin-hee Kim, In-wook Cho, Sang-su Kim
  • Patent number: 6806517
    Abstract: A notched gate SONOS transistor includes: a substrate having source/drain regions; a gate insulator layer on the substrate between the source/drain regions; a notched gate structure, on the gate insulator leyer, having at least one notch; and at least one ONO wedge structure in the at least one notch, respectively, of the gate structure.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 19, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Su Kim, Nae-In Lee, Geum-Jong Bae, Ki Chul Kim, Hwa Sung Rhee
  • Publication number: 20040183126
    Abstract: A local SONOS structure having a two-piece gate and a self-aligned ONO structure includes: a substrate; an ONO structure on the substrate; a first gate layer on and aligned with the ONO structure; a gate insulator on the substrate aside the ONO structure; and a second gate layer on the first gate layer and on the gate insulator. The first and second gate layers are electrically connected together. Together, the ONO structure and first and second gate layers define at least a 1-bit local SONOS structure. A corresponding method of manufacture includes: providing a substrate; forming an ONO structure on the substrate; forming a first gate layer on and aligned with the ONO structure; forming a gate insulator on the substrate aside the ONO structure; forming a second gate layer on the first gate layer and on the gate insulator; and electrically connecting the first and second gate layers.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventors: Geum-Jong Bae, Nae-In Lee, Sang Su Kim, Ki Chul Kim, Jin-Hee Kim, In-Wook Cho, Sung-Ho Kim, Kwang-Wook Koh
  • Publication number: 20040183106
    Abstract: A notched gate SONOS transistor includes: a substrate having source/drain regions; a gate insulator layer on the substrate between the source/drain regions; a notched gate structure, on the gate insulator layer, having at least one notch; and at least one ONO wedge structure in the at least one notch, respectively, of the gate structure.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventors: Sang Su Kim, Nae-In Lee, Geum-Jong Bae, Ki Chul Kim, Hwa Sung Rhee
  • Patent number: 6794306
    Abstract: A semiconductor device having a transistor of gate all around (GAA) type and a method of fabricating the same are disclosed. A SOI substrate composed of a SOI layer, a buried oxide layer and a lower substrate is prepared. The SOI layer has at least one unit dual layer of a silicon germanium layer and a silicon layer. The SOI layer is patterned to form an active layer pattern to a certain direction. An insulation layer is formed to cover the active layer pattern. An etch stop layer is stacked on the active layer pattern covered with the insulation layer. The etch stop layer is patterned and removed at a gate region crossing the active layer pattern at the channel region. The insulation layer is removed at the gate region. The silicon germanium layer is isotropically etched and selectively removed to form a cavity at the channel region of the active layer pattern.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 21, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Su Kim, Tae-Hee Choe, Hwa-Sung Rhee, Geum-Jong Bae, Nae-In Lee
  • Publication number: 20040115896
    Abstract: A MOS transistor having a T-shaped gate electrode and a method for fabricating the same are provided, wherein the MOS transistor includes a T-shaped gate electrode on a semiconductor substrate; an L-shaped lower spacer disposed at both sides of the gate electrode to cover a top surface of the semiconductor substrate; and low-, mid-, and high-concentration impurity regions formed in the semiconductor substrate of both sides of the gate electrode. The high-concentration impurity region is disposed in the semiconductor substrate next to the lower spacer and the mid-concentration impurity region is disposed between the high- and low-concentration impurity regions. A MOS transistor according to the present invention provides a decrease in a capacitance, a decrease in a channel length, and an increase in a cross-sectional area of the gate electrode. At the same time, the mid-concentration impurity region provides a decrease in a source/drain resistance Rsd.
    Type: Application
    Filed: September 11, 2003
    Publication date: June 17, 2004
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Sang-Su Kim, Jung-Il Lee
  • Patent number: 6750532
    Abstract: In a CMOS semiconductor device having a substrate, a gate insulating layer formed on the substrate, at least one first polysilicon gate formed over the substrate in at least one PMOS transistor region, and at least one second polysilicon gate formed over the substrate in at least one NMOS transistor region, a total amount of Ge in the first polysilicon gate is the same as that in the second polysilicon gate, a distribution of Ge concentration in the first and/or second polysilicon gate is different according to a distance from the gate insulating layer, and Ge concentration in a portion of the first polysilicon gate adjacent to the gate insulating layer is higher than that in the second polysilicon gate. The Ge concentration in the portion of the first polysilicon gate adjacent to the gate insulating layer is more than two times as high as that in the second polysilicon gate.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: June 15, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-Sung Rhee, Geum-Jong Bae, Tae-Hee Choe, Sang-Su Kim, Nae-In Lee
  • Publication number: 20040099910
    Abstract: A SOI substrate having an etch stopping layer, a SOI integrated circuit fabricated on the SOI substrate, and a method of fabricating both are provided. The SOI substrate includes a supporting substrate, an etch stopping layer staked on the supporting substrate, a buried oxide layer and a semiconductor layer sequentially stacked on the etch stopping layer. The etch stopping layer preferably has an etch selectivity with respect to the buried oxide layer. A device isolation layer is preferably formed to define active regions. The device isolation, buried oxide and etch-stop layers are selectively removed to form first and second holes exposing the supporting substrate without damaging it. Semiconductor epitaxial layers grown on the exposed supporting substrate therefore have single crystalline structures without crystalline defects. Thus, when impurity regions are formed at surfaces of the epitaxial layers, a high performance PN diode having a superior leakage current characteristic may be formed.
    Type: Application
    Filed: November 17, 2003
    Publication date: May 27, 2004
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Hee Choe, Nae-In Lee, Geum-Jong Bae, Sang-Su Kim, Hwa-Sung Rhee
  • Publication number: 20040079976
    Abstract: The present invention provides a semiconductor transistor using an L-shaped spacer and a method of fabricating the same. The semiconductor transistor includes a gate pattern formed on a semiconductor substrate and an L-shaped third spacer formed beside the gate pattern and having a horizontal protruding portion. An L-shaped fourth spacer is formed between the third spacer and the gate pattern, and between the third spacer and the substrate. A high-concentration junction area is positioned in the substrate beyond the third spacer, and a low-concentration junction area is positioned under the horizontal protruding portion of the third spacer. A medium-concentration junction area is positioned between the high- and low-concentration junction areas.
    Type: Application
    Filed: December 8, 2003
    Publication date: April 29, 2004
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Young-Gun Ko, Tae-Hee Choe, Sang-Su Kim
  • Patent number: 6727130
    Abstract: A method of forming a CMOS type semiconductor device having dual gate includes forming a first gate insulation layer and a first metal-containing layer sequentially on a surface of a substrate in first and second impurity type transistor regions, removing the first metal-containing layer and the first gate insulation layer in the second impurity type transistor region, forming a second gate insulation layer and a second metal-containing layer in the second impurity type transistor region, and forming first and second electrodes in the first and second impurity type transistor regions, respectively, by patterning the first and second metal-containing layers.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: April 27, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Sik Kim, Nae-In Lee
  • Publication number: 20040075143
    Abstract: CMOS integrated circuit devices include an electrically insulating layer and an unstrained silicon active layer on the electrically insulating layer. An insulated gate electrode is also provided on a surface of the unstrained silicon active layer. A Si1-xGex layer is also disposed between the electrically insulating layer and the unstrained silicon active layer. The Si1-xGex layer forms a first junction with the unstrained silicon active layer and has a graded concentration of Ge therein that decreases monotonically in a first direction extending from a peak level towards the surface of the unstrained silicon active layer. The peak Ge concentration level is greater than x=0.15 and the concentration of Ge in the Si1-xGex layer varies from the peak level to a level less than about x=0.1 at the first junction. The concentration of Ge at the first junction may be abrupt. More preferably, the concentration of Ge in the Si1-xGex layer varies from the peak level where 0.2<x<0.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 22, 2004
    Inventors: Geum-Jong Bae, Tae-Hee Choe, Sang-Su Kim, Hwa-Sung Rhee, Nae-In Lee, Kyung-Wook Lee
  • Patent number: 6716689
    Abstract: A MOS transistor having a T-shaped gate electrode and a method for fabricating the same are provided, wherein the MOS transistor includes a T-shaped gate electrode on a semiconductor substrate; an L-shaped lower spacer disposed at both sides of the gate electrode to cover a top surface of the semiconductor substrate; and low-, mid-, and high-concentration impurity regions formed in the semiconductor substrate of both sides of the gate electrode. The high-concentration impurity region is disposed in the semiconductor substrate next to the lower spacer and the mid-concentration impurity region is disposed between the high- and low-concentration impurity regions. A MOS transistor according to the present invention provides a decrease in a capacitance, a decrease in a channel length, and an increase in a cross-sectional area of the gate electrode. At the same time, the mid-concentration impurity region provides a decrease in a source/drain resistance Rsd.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: April 6, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Sang-Su Kim, Jung-Il Lee