Patents by Inventor Nak Jin Choi

Nak Jin Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7897735
    Abstract: Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: March 1, 2011
    Assignees: Electronics and Telecommunications Research Institute, Korea Research Institute of Chemical Technology
    Inventors: Hyoyoung Lee, Junghyun Lee, Heeyoel Baek, Gyeong Sook Bang, Jonghyurk Park, Nak-Jin Choi, Kun Jun, Seung Rim Shin
  • Patent number: 7891077
    Abstract: A method of preparing a polymer actuator includes providing an ionic conductive polymer membrane; forming first and second metal electrodes respectively over first and second surfaces of the ionic conductive polymer membrane; substituting water used in the formation of the first and second metal electrodes with an ionic liquid stable to an electrolysis; and coating the first and second surfaces of the metal electrodes with a coating material.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: February 22, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Kun Lee, Nak Jin Choi, Kang Ho Park, Jong Dae Kim
  • Publication number: 20100297808
    Abstract: Provided are a molecular electronic device and a method of fabricating the molecular electronic device. The molecular electronic device includes a substrate, an organic dielectric thin film formed over the substrate, a molecular active layer formed on the organic dielectric thin film and having a charge trap site, and an electrode formed on the molecular active layer. The organic dielectric thin film may be immobilized on the electrode or a Si layer by a self-assembled method. The organic dielectric thin film may include first and second molecular layers bound together through hydrogen bonds. An organic compound may be self-assembled over the substrate to form the organic dielectric thin film. The organic compound may include an M?-R-T structure, where M?, R and T represent a thiol or silane derivative, a saturated or unsaturated C1 to C20 hydrocarbon group which is substituted or unsubstituted with fluorine (F), and an amino(—NH2) or carboxyl (—COOH) group, respectively.
    Type: Application
    Filed: June 14, 2010
    Publication date: November 25, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyoyoung LEE, Gyeong Sook BANG, Jonghyurk PARK, Junghyun LEE, Nak Jin CHOI, Ja Ryong KOO
  • Patent number: 7811934
    Abstract: Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: October 12, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jeong, Hyo Young Lee, Nak Jin Choi, Kang Ho Park
  • Patent number: 7759677
    Abstract: Provided are a molecular electronic device and a method of fabricating the molecular electronic device. The molecular electronic device includes a substrate, an organic dielectric thin film formed over the substrate, a molecular active layer formed on the organic dielectric thin film and having a charge trap site, and an electrode formed on the molecular active layer. The organic dielectric thin film may be immobilized on the electrode or a Si layer by a self-assembled method. The organic dielectric thin film may include first and second molecular layers bound together through hydrogen bonds. An organic compound may be self-assembled over the substrate to form the organic dielectric thin film. The organic compound may include an M?-R-T structure, where M?, R and T represent a thiol or silane derivative, a saturated or unsaturated C1 to C20 hydrocarbon group which is substituted or unsubstituted with fluorine (F), and an amino(—NH2) or carboxyl (—COOH) group, respectively.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: July 20, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyoyoung Lee, Gyeong Sook Bang, Jonghyurk Park, Junghyun Lee, Nak Jin Choi, Ja Ryong Koo
  • Publication number: 20100090210
    Abstract: Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Inventors: Hyoyoung Lee, Junghyun Lee, Heeyoel Baek, Gyeong Sook Bang, Jonghyurk Park, Nak-Jin Choi, Kun Jun, Seung Rim Shin
  • Publication number: 20090294762
    Abstract: Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.
    Type: Application
    Filed: April 28, 2009
    Publication date: December 3, 2009
    Inventors: Hyoyoung Lee, Junghyun Lee, Heeyoel Baek, Gyeong Sook Bang, Jonghyurk Park, Nak-Jin Choi, Kun Jun, Seung Rim Shin
  • Publication number: 20090169032
    Abstract: A method and an apparatus for designing a sound compensation filter of a portable terminal are provided. The method includes synchronizing a signal input through a microphone of the system and a test signal, estimating a loss interval of the synchronized signal, compensating for a frame signal delayed by a signal loss in a time axis when the signal loss of the estimated loss interval is greater than a threshold and restoring the loss interval of the signal.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventor: Nak-Jin CHOI
  • Patent number: 7538199
    Abstract: Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 26, 2009
    Assignees: Electronics and Telecommunications Research Institute, Korea Research Institute of Chemical Technology
    Inventors: Hyoyoung Lee, Junghyun Lee, Heeyoel Baek, Gyeong Sook Bang, Jonghyurk Park, Nak-Jin Choi, Kun Jun, Seung Rim Shin
  • Publication number: 20090027833
    Abstract: Provided are a surface-coated polymer actuator and a method of preparing the same. The polymer actuator includes an ionic conductive polymer membrane, metal electrodes formed on both surfaces of the ionic conductive polymer membrane, and coating layers formed on both the surfaces of the metal electrodes. By coating the surfaces of the metal electrodes of the polymer actuator, the leakage of solvent from the electrode surfaces due to an inner pressure, which is caused by the solvent's flow due to an electrical stimulus when the actuator is operated, can be prevented and thus the displacement and drivability of the polymer actuator can be improved.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 29, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyung Kun Lee, Nak Jin Choi, Kang Ho Park, Jong Dae Kim
  • Publication number: 20090023288
    Abstract: Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
    Type: Application
    Filed: March 11, 2008
    Publication date: January 22, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jeong, Hyo Young Lee, Nak Jin Choi, Kang Ho Park
  • Patent number: 7420058
    Abstract: Provided are a compound for a molecular electronic device which includes a terpyridine-ruthenium organic metal compound including a thiol anchoring group of the formula below, a method of synthesizing the compound and a molecular electronic device including a molecular active layer obtained from the compound. In the formula, R1 and R2 are each a thioacetyl group or a hydrogen atom, at least one of R1 and R2 is a thioacetyl group, and m and n are each integers from 0 to 20. The molecular active layer, which is formed by self-assembling the compound on an electrode surface, composes a switching element and a memory element.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: September 2, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyo Young Lee, Jung Hyun Lee, Gyeong Sook Bang, Nak Jin Choi, Jong Hyurk Park
  • Patent number: 7419764
    Abstract: Provided is a method of fabricating a nanoimprint mold which can form sub-100 nm fine pattern structures. The method includes forming patterns on a first substrate using an E-beam lithography (EBL) process, and transferring the patterns formed on the first substrate to a second substrate using a nanoimprint lithography (NIL) process to complete an NIL mold. Accordingly, the method can easily fabricate the nanoimprint mold at low costs on a quartz or glass substrate, which is not suitable for an EBL process to produce sub-100 nm patterns, by utilizing the advantages of the EBL process with a resolution of tens of nanometers.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: September 2, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jong Hyurk Park, Hyo Young Lee, Nak Jin Choi, Jung Hyun Lee, Gyeong Sook Bang
  • Publication number: 20080107906
    Abstract: Provided are a method for preparing polymer actuators with high stability and polymer actuators prepared by the method, and more specifically, to a method for preparing polymer actuators with high stability that use low power, are extremely thin, and can be substituted in a motor of a camera module, and polymer actuators prepared by the method. The method includes the steps of: preparing an Ionic Polymer Metal Composite (IPMC) in which metal electrodes are plated on both surfaces of a ionic polymer film; removing water from the ionic polymer film of the IPMC; and expanding the IPMC in a polar solvent that has a higher boiling point and a lower freezing point than water.
    Type: Application
    Filed: September 17, 2007
    Publication date: May 8, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Nak Jin Choi, Jung Hyun Lee, Kang Ho Park, Hyo Young Lee, Hyung Kun Lee, Jong Dae Kim
  • Publication number: 20080054256
    Abstract: Provided are a molecular electronic device and a method of fabricating the molecular electronic device. The molecular electronic device includes a substrate, an organic dielectric thin film formed over the substrate, a molecular active layer formed on the organic dielectric thin film and having a charge trap site, and an electrode formed on the molecular active layer. The organic dielectric thin film may be immobilized on the electrode or a Si layer by a self-assembled method. The organic dielectric thin film may include first and second molecular layers bound together through hydrogen bonds. An organic compound may be self-assembled over the substrate to form the organic dielectric thin film. The organic compound may include an M?-R-T structure, where M?, R and T represent a thiol or silane derivative, a saturated or unsaturated C1 to C20 hydrocarbon group which is substituted or unsubstituted with fluorine (F), and an amino(—NH2) or carboxyl (—COOH) group, respectively.
    Type: Application
    Filed: June 11, 2007
    Publication date: March 6, 2008
    Inventors: Hyoyoung LEE, Gyeong Sook BANG, Jonghyurk PARK, Junghyun LEE, Nak Jin CHOI, Ja Ryong KOO
  • Publication number: 20070073058
    Abstract: Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.
    Type: Application
    Filed: April 4, 2006
    Publication date: March 29, 2007
    Inventors: Hyoyoung Lee, Junghyun Lee, Heeyoel Baek, Gyeong Bang, Jonghyurk Park, Nak-Jin Choi, Kun Jun, Seung Shin