Patents by Inventor Nan-Rong Chiou

Nan-Rong Chiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180304439
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing, for example, a semiconductor substrate, having one or more endpoint detection windows (windows) which at a thickness of 2 mm would have a UV cut-off at a wavelength of 325 nm or lower which are the product of a reaction mixture of (A) from 30 to 56 wt. % of one or more cycloaliphatic diisocyanates or polyisocyanates with (B) from 43 to 69.9999 a polyol mixture of (i) a polymeric diol having an average molecular weight of from 500 to 1,500, such as a polycarbonate diol for hard windows and a polyether polyol for soft windows and (ii) a triol having an average to molecular weight of from 120 to 320 in a weight ratio of (B)(i) polymeric diol to (B)(ii) triol ranging from 1.6:1 to 5.2:1, and a catalyst, preferably a secondary or tertiary amine or bismuth neodecanoate, all weight percent's based on the total solids weight of the reaction mixture.
    Type: Application
    Filed: March 2, 2018
    Publication date: October 25, 2018
    Inventors: Nan-Rong Chiou, Mohammad T. Islam, George C. Jacob
  • Patent number: 10100300
    Abstract: A simple and low cost method of producing sealed arrays of laterally ordered nanochannels interconnected to microchannels of tunable size, over large surface areas, is disclosed. The method incorporates DNA combing and subsequent imprinting. Associated micro and macroscale inlets and outlets can be formed in the same process or manufactured later in low cost, non-cleanroom techniques. The techniques embrace two procedures, generating DNA nanostrands and translating these strands into nanoscale constructs via imprinting. Devices incorporating the novel arrays have a first microchannel, a second microchannel and a nanochannel that is substantially linear and which defines an axis. The nanochannel is connected at its open ends to the microchannels, which are aligned along the axis. Methods for precise dose delivery of agents into cells employing the devices in nanoelectroporation methods are also disclosed.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 16, 2018
    Inventors: Ly James Lee, Pouyan E. Boukany, Jingjiao Guan, Nan-Rong Chiou
  • Patent number: 10086494
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a curative and a polyisocyanate prepolymer having an unreacted isocyanate (NCO) concentration of from 8.3 to 9.8 wt. % and formed from a polyol blend of polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMEG) and containing a hydrophilic portion of polyethylene glycol or ethylene oxide repeat units, a toluene diisocyanate, and one or more isocyanate extenders, wherein the polyurethane reaction product exhibits a wet Shore D hardness of from 10 to 20% less than the Shore D hardness of the dry polyurethane reaction product.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 2, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Jonathan G. Weis, George C. Jacob, Bhawesh Kumar, Sarah E. Mastroianni, Wenjun Xu, Nan-Rong Chiou, Mohammad T. Islam
  • Publication number: 20180127739
    Abstract: A simple and low cost method of producing sealed arrays of laterally ordered nanochannels interconnected to microchannels of tunable size, over large surface areas, is disclosed. The method incorporates DNA combing and subsequent imprinting. Associated micro and macroscale inlets and outlets can be formed in the same process or manufactured later in low cost, non-cleanroom techniques. The techniques embrace two procedures, generating DNA nanostrands and translating these strands into nanoscale constructs via imprinting. Devices incorporating the novel arrays have a first microchannel, a second microchannel and a nanochannel that is substantially linear and which defines an axis. The nanochannel is connected at its open ends to the microchannels, which are aligned along the axis. Methods for precise dose delivery of agents into cells employing the devices in nanoelectroporation methods are also disclosed.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 10, 2018
    Inventors: Ly James Lee, Pouyan E. Boukany, Jingjiao Guan, Nan-Rong Chiou
  • Publication number: 20180071888
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a curative and a polyisocyanate prepolymer having an unreacted isocyanate (NCO) concentration of from 8.3 to 9.8 wt. % and formed from a polyol blend of polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMEG) and containing a hydrophilic portion of polyethylene glycol or ethylene oxide repeat units, a toluene diisocyanate, and one or more isocyanate extenders, wherein the polyurethane reaction product exhibits a wet Shore D hardness of from 10 to 20% less than the Shore D hardness of the dry polyurethane reaction product.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: Jonathan G. Weis, George C. Jacob, Bhawesh Kumar, Sarah E. Mastroianni, Wenjun Xu, Nan-Rong Chiou, Mohammad T. Islam
  • Patent number: 9816086
    Abstract: A simple and low cost method of producing sealed arrays of laterally ordered nanochannels interconnected to microchannels of tunable size, over large surface areas, is disclosed. The method incorporates DNA combing and subsequent imprinting. Associated micro and macroscale inlets and outlets can be formed in the same process or manufactured later in low cost, non-cleanroom techniques. The techniques embrace two procedures, generating DNA nanostrands and translating these strands into nanoscale constructs via imprinting. Devices incorporating the novel arrays have a first microchannel, a second microchannel and a nanochannel that is substantially linear and which defines an axis. The nanochannel is connected at its open ends to the microchannels, which are aligned along the axis. Methods for precise dose delivery of agents into cells employing the devices in nanoelectroporation methods are also disclosed.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 14, 2017
    Inventors: Ly James Lee, Pouyan E. Boukany, Jingjiao Guan, Nan-Rong Chiou
  • Publication number: 20150307710
    Abstract: Embodiments of the present disclosure include a hardener compound for curing with an epoxy resin, where the hardener compound includes a copolymer having a first constitutional unit of the formula (I), a second constitutional unit of the formula (II), and a third constitutional unit of the formula (III), where each q, n and m is independently a positive integer; each b is independently selected from the group of 6, 8, 10 and 12; each Y is independently an organic group; and each R is independently selected from the group of a hydrogen, an organic group and a halogen. Embodiments of the present disclosure include an epoxy system that includes the hardener compound and an epoxy resin.
    Type: Application
    Filed: December 12, 2012
    Publication date: October 29, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Michael J. Mullins, Chao Zhang, Jia wen Xiong, Hongyu Chen, Michael D. Read, Nan-Rong Chiou
  • Publication number: 20150252149
    Abstract: The present invention provides processes for making higher molecular weight, functionalized poly(meth)acrylamide polymer products. As an overview, the processes use (trans)amidation techniques in the melt phase to react one or more high molecular weight amide functional polymers or copolymers with at least one co-reactive species comprising at least one labile amine moiety and at least one additional functionality other than amine functionality. In practical effect, the processes of the present invention thus incorporate one or more additional functionalities onto an already formed or partially formed polymer rather than trying to incorporate all functionality via copolymerization techniques as the polymer is formed from constituent monomers. The methods provide an easy way to provide functionalized, high molecular weight poly(meth)acrylamide polymer products.
    Type: Application
    Filed: September 19, 2013
    Publication date: September 10, 2015
    Inventors: Chunming Zhang, Nan-Rong Chiou, Sayeed Abbas, XiaoHua S. Qiu, Michael D, Read, Aaron W. Sanders
  • Publication number: 20140256047
    Abstract: A simple and low cost method of producing sealed arrays of laterally ordered nanochannels interconnected to microchannels of tunable size, over large surface areas, is disclosed. The method incorporates DNA combing and subsequent imprinting. Associated micro and macroscale inlets and outlets can be formed in the same process or manufactured later in low cost, non-cleanroom techniques. The techniques embrace two procedures, generating DNA nanostrands and translating these strands into nanoscale constructs via imprinting. Devices incorporating the novel arrays have a first microchannel, a second microchannel and a nanochannel that is substantially linear and which defines an axis. The nanochannel is connected at its open ends to the microchannels, which are aligned along the axis. Methods for precise dose delivery of agents into cells employing the devices in nanoelectroporation methods are also disclosed.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Inventors: Ly James Lee, Pouyan E. Boukany, Jingjiao Guan, Nan-Rong Chiou
  • Patent number: 8507568
    Abstract: Synthesis of polystyrene and/or other thermoplastic polymers or polymer blends which, for example, contain activated carbon and/or bamboo carbon carrying a co-blowing agent such as water and/or at least one of 1-dimensional, 2-dimensional, and 3-dimensional nano/micro-materials in suspension polymerization without using the inverse emulsion process. CO2 or other blowing agent based foaming processes such as extrusion, batch foaming, and injection molding may then be carried out to produce polymer foams that have low density, high-R value, bimodal structures, good mechanical properties, and high fire retardance.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: August 13, 2013
    Assignees: The Ohio State University, Nanomaterial Innovation Ltd
    Inventors: Ly James Lee, Jintao Yang, Nan-Rong Chiou, Shu-Kai Yeh
  • Patent number: 8293140
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 23, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Publication number: 20120035353
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Patent number: 8038907
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: October 18, 2011
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Publication number: 20110240904
    Abstract: Exemplary embodiments of the present invention relate to polystyrene and/or thermoplastic polymer or polymer blend composite foam or a foamable polymeric material precursor, which contains activated carbon and/or at least one of 1-dimensional, 2-dimensional, and 3-dimensional nano/micro-materials in polystyrene and/or thermoplastic polymer and/or polymer blend matrix to carry a co-blowing agent such as water without using any surfactant-like molecules and/or polymers, having or adapted to have the properties of low density, high-R value, good mechanical properties, and fire retardance thereof. Exemplary embodiments of the present invention include various manufacturing methods that may be employed including, but not limited to, extrusion, batch molding, and injection molding. One example includes synthesis and CO2 and water-based extruded foaming of such a material.
    Type: Application
    Filed: May 28, 2009
    Publication date: October 6, 2011
    Applicants: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION, NANOMATERIAL INNOVATION LTD
    Inventors: Nan-Rong Chiou, Ly James Lee, Jintao Yang, Shu-Kai Yeh
  • Publication number: 20110229706
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: April 2, 2007
    Publication date: September 22, 2011
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Patent number: 7713446
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: May 11, 2010
    Assignee: The Ohio State Univeristy
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Publication number: 20100099782
    Abstract: Synthesis of polystyrene and/or other thermoplastic polymers or polymer blends which, for example, contain activated carbon and/or bamboo carbon carrying a co-blowing agent such as water and/or at least one of 1-dimensional, 2-dimensional, and 3-dimensional nano/micro-materials in suspension polymerization without using the inverse emulsion process. CO2 or other blowing agent based foaming processes such as extrusion, batch foaming, and injection molding may then be carried out to produce polymer foams that have low density, high-R value, bimodal structures, good mechanical properties, and high fire retardance.
    Type: Application
    Filed: August 11, 2009
    Publication date: April 22, 2010
    Applicants: The Ohio State University Research Foundation, Nanomaterial Innovation LTD
    Inventors: Ly James Lee, Jintao Yang, Nan-Rong Chiou, Shu-Kai Yeh
  • Publication number: 20080197326
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: April 15, 2008
    Publication date: August 21, 2008
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Patent number: 7374703
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: May 20, 2008
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Publication number: 20070034836
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: June 28, 2005
    Publication date: February 15, 2007
    Inventors: Arthur Epstein, Nan-Rong Chiou