Patents by Inventor Naoki Ohta

Naoki Ohta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189551
    Abstract: A semiconductor device according to an embodiment of the disclosure includes a base, a semiconductor element, a first conductor, and a second conductor. The base has an outer edge including a first part, a second part, and a third part. The first part and the second part are substantially parallel to each other. The third part extends in a direction that intersects both of the first part and the second part. The semiconductor element is covered with the base. The first conductor is coupled to the semiconductor element, and protrudes to an outside of the base from the first part of the outer edge. The second conductor is coupled to the semiconductor element, and protrudes to the outside of the base from the third part of the outer edge.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 30, 2021
    Assignee: TDK CORPORATION
    Inventors: Naoki Ohta, Keita Miyachi
  • Publication number: 20210318396
    Abstract: A magnetic sensor includes a base material, a plurality of magnets provided at predetermined spacing on the base material, and a plurality of magnetic detection parts respectively provided close to the plurality of magnets. Each of the plurality of magnetic detection parts outputs a signal in accordance with change in the magnetic field accompanying deformation of the base material.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Naoki OHTA, Kazuya WATANABE
  • Patent number: 11131727
    Abstract: A magnetic sensor device having a spin-valve-type magnetoresistive effect element and capable of stably applying a bias magnetic field on the free layer of the magnetoresistive effect element includes a spin-valve-type magnetoresistive effect element, a substrate on which the magnetoresistive effect element is positioned, a power source that supplies a substantially constant electric current applied on the magnetoresistive effect element, and a magnetic field generator that is connected to the electric current path of the electric current applied on the magnetoresistive effect element in series. The magnetic field generator is provided to be capable of applying a bias magnetic field on at least a portion of the magnetoresistive effect element. The magnetic field generator is close to a portion of the magnetoresistive effect element and is positioned at a different level from the substrate.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: September 28, 2021
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Yongfu Cai
  • Publication number: 20210288557
    Abstract: A rotation detection apparatus includes a magnetic field generation source, a spin valve element, and a calculator. The magnetic field generation source is rotatable while generating a magnetic field, and has a temperature coefficient of residual magnetic flux density having an absolute value of 0.1%/° C. or less. The spin valve element includes a magnetic layer configured to generate a movement of a magnetic domain wall in accordance with a change in direction of the magnetic field associated with a rotation of the magnetic field generation source. The calculator is configured to detect a change in resistance of the spin valve element caused by the movement of the magnetic domain wall and to calculate the number of rotations or a rotation angle of the magnetic field generation source.
    Type: Application
    Filed: December 9, 2020
    Publication date: September 16, 2021
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Naoki OHTA
  • Patent number: 11073578
    Abstract: A magnetic sensor includes a base material, a plurality of magnets provided at predetermined spacing on the base material, and a plurality of magnetic detection parts respectively provided close to the plurality of magnets. Each of the plurality of magnetic detection parts outputs a signal in accordance with change in the magnetic field accompanying deformation of the base material.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 27, 2021
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Kazuya Watanabe
  • Patent number: 11067648
    Abstract: A magnetic sensor that ensures the height of the yoke and that guides magnetic flux in the direction in which the magnetic field sensing film detects a magnetic field includes a first magnetic field detection element that has a first magnetic field sensing film that detects a magnetic field in a first direction, and a first yoke that includes a first portion that is located on a side of the first magnetic field sensing film with respect to the first direction, and a second portion that is in contact with the first portion in a direction that is orthogonal to the first direction. The average dimension of the second portion in the first direction is larger than the average dimension of the first portion in the first direction.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: July 20, 2021
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Keisuke Takasugi
  • Publication number: 20210025765
    Abstract: A heat utilizing device is provided in which the thermal resistance of the wiring layer is increased while an increase in electric resistance of the wiring layer is limited. Heat utilizing device has thermistor whose electric resistance changes depending on temperature; and wiring layer that is connected to thermistor. A mean free path of phonons in wiring layer is smaller than a mean free path of phonons in an infinite medium that consists of a material of wiring layer.
    Type: Application
    Filed: March 6, 2018
    Publication date: January 28, 2021
    Inventors: Shinji HARA, Naoki OHTA, Susumu AOKI, Eiji KOMURA, Akimasa KAIZU
  • Publication number: 20210020552
    Abstract: An electronic component package has an outer edge including a first side and a second side adjacent to each other. The electronic component package includes a first electronic component chip, a second electronic component chip provided at a distance from the first electronic component chip, one or more first terminals disposed along the first side, one or more second terminals disposed along the second side, and one or more first conductors. The one or more first conductors couple the one or more first terminals to the first electronic component chip, with the one or more first terminals being uncoupled to the second electronic component chip.
    Type: Application
    Filed: June 26, 2020
    Publication date: January 21, 2021
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Hiroshi NAGANUMA, Naoki OHTA
  • Patent number: 10895473
    Abstract: The magnetoresistive effect element is provided with a plurality of magnetoresistive effect laminated bodies, a plurality of lower lead electrodes and upper lead electrodes that electrically connect the plurality of magnetoresistive effect laminated bodies in series, and a film that electrically connects the plurality of lower lead electrodes to each other so that none of the plurality of lower lead electrodes is electrically isolated.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 19, 2021
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Takayasu Kanaya
  • Patent number: 10895474
    Abstract: A magnetoresistive element is provided with a plurality of magnetoresistive laminated bodies arranged in an array and a plurality of lead electrodes that electrically connect the plurality of magnetoresistive laminated bodies in series. A first lead electrode electrically connected to a first surface in the lamination direction of a first magnetoresistive laminated body among the plurality of magnetoresistive laminated bodies and a second lead electrode electrically connected to a first surface in the lamination direction of a second magnetoresistive laminated body adjacent in the series direction are electrically connected without a magnetoresistive laminated body being interposed in between.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 19, 2021
    Assignee: TDK Corporation
    Inventor: Naoki Ohta
  • Patent number: 10890629
    Abstract: A magnetic sensor includes first and second yokes, first and second magnetoresistive elements, and a current path for passing a current through the first and second magnetoresistive elements. Each of the first and second yokes receives an input magnetic field containing an input magnetic field component in a direction parallel to a first virtual straight line Lz, and generates an output magnetic field. The output magnetic field contains an output magnetic field component in a direction parallel to a second virtual straight line Lx orthogonal to the first virtual straight line Lz. The first and second magnetoresistive elements generate respective detection values corresponding to the output magnetic field components of the output magnetic fields generates by the first and second yokes. The first and second yokes are electrically continuous with the first and second magnetoresistive elements, respectively.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: January 12, 2021
    Assignee: TDK CORPORATION
    Inventor: Naoki Ohta
  • Publication number: 20200408604
    Abstract: An electromagnetic wave sensor that limits the influence on bolometer membranes that is caused by heat from a local heat source is provided. Eelectromagnetic wave sensor has first substrate, second substrate that faces first substrate so as to form inner space between first substrate and second substrate, wherein second substrate transmits infrared rays; a plurality of bolometer membranes that is provided in inner space and that is supported by second substrate; local heat source that is formed in first substrate; first electric connection member that connects first substrate to second substrate; and lead that extends on or in second substrate and that connects first electric connection member to bolometer membrane.
    Type: Application
    Filed: March 7, 2018
    Publication date: December 31, 2020
    Inventors: Naoki OHTA, Shinji HARA, Susumu AOKI, Eiji KOMURA, Akimasa KAIZU
  • Patent number: 10859405
    Abstract: A sensor system according to an embodiment of the disclosure includes a physical quantity distribution generation source configured to generate a distribution of a physical quantity, and a plurality of sensor packages including respective sensor chips configured to detect the physical quantity. In a plane including the sensor packages, central positions of the respective sensor chips are shifted in directions from central positions of the respective sensor packages toward a central position of the distribution of the physical quantity, and distances from the central position of the distribution of the physical quantity to the central positions of the respective sensor chips of the respective sensor packages are substantially equal to each other.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: December 8, 2020
    Assignee: TDK CORPORATION
    Inventors: Naoki Ohta, Yoshiyuki Mizoguchi
  • Publication number: 20200292638
    Abstract: A magnetic sensor includes a base material, a plurality of magnets provided at predetermined spacing on the base material, and a plurality of magnetic detection parts respectively provided close to the plurality of magnets. Each of the plurality of magnetic detection parts outputs a signal in accordance with change in the magnetic field accompanying deformation of the base material.
    Type: Application
    Filed: January 17, 2020
    Publication date: September 17, 2020
    Inventors: Naoki OHTA, Kazuya WATANABE
  • Publication number: 20200292636
    Abstract: A magnetic sensor device having a spin-valve-type magnetoresistive effect element and capable of stably applying a bias magnetic field on the free layer of the magnetoresistive effect element includes a spin-valve-type magnetoresistive effect element, a substrate on which the magnetoresistive effect element is positioned, a power source that supplies a substantially constant electric current applied on the magnetoresistive effect element, and a magnetic field generator that is connected to the electric current path of the electric current applied on the magnetoresistive effect element in series. The magnetic field generator is provided to be capable of applying a bias magnetic field on at least a portion of the magnetoresistive effect element. The magnetic field generator is close to a portion of the magnetoresistive effect element and is positioned at a different level from the substrate.
    Type: Application
    Filed: September 20, 2019
    Publication date: September 17, 2020
    Inventors: Naoki OHTA, Yongfu CAI
  • Publication number: 20200279997
    Abstract: A resistance change element includes a first lead electrode, a resistance change layer provided on the first lead electrode, and a second lead electrode provided on the resistance change layer. The surface of the first lead electrode on the resistance change layer side includes a first region in which the resistance change layer is provided, and a second region that is a region other than the first region. In the second region, a second material having a work function that is larger than that of a first material configuring the first lead electrode is unevenly distributed.
    Type: Application
    Filed: January 7, 2020
    Publication date: September 3, 2020
    Inventor: Naoki OHTA
  • Patent number: 10698043
    Abstract: A triaxial magnetic sensor that can detect with high precision magnetic fields in three axial directions comprises a substrate having a first surface and a second surface opposite the first surface, and a magnetic sensor element group provided on the first surface. The magnetic sensor element group includes a first magnetic sensor element for magnetic detection in the x-axis direction, a second magnetic sensor element for magnetic detection in the y-axis direction and a third magnetic sensor element for magnetic detection in the z-axis direction. The first through third magnetic sensor elements respectively contain first through third magneto-resistive effect elements composed of laminated bodies including at least a magnetization fixed layer and a free layer, and the magnetization direction of each of the magnetization fixed layers of the first through third magneto-resistive elements is fixed in a direction inclined at a prescribed angle with respect to the first surface.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 30, 2020
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Hirokazu Takahashi, Satoshi Miura
  • Patent number: 10634740
    Abstract: A magnetic sensor having a yoke that can achieve large magnetic flux density and that can be accurately formed is provided. The magnetic sensor includes magnetic field detection element 21 that detects a magnetic field in first direction X and first yoke 23 that is located near magnetic field detection element 21 and extends in second direction Z that is orthogonal to first direction X. First yoke 23 includes first portion 23a that is located away from magnetic field detection element 21 at least in first direction X and second portion 23b that is located farther away from magnetic field detection element 21 than first portion 23a with respect to second direction Z. The second portion 23b has surface 23f that is opposite to interface 23d with the first portion 23a, surface 23f having a curved shape that protrudes in a direction away from the first portion 23a.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 28, 2020
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Keisuke Takasugi
  • Publication number: 20200096578
    Abstract: A magnetic sensor that ensures the height of the yoke and that guides magnetic flux in the direction in which the magnetic field sensing film detects a magnetic field includes a first magnetic field detection element that has a first magnetic field sensing film that detects a magnetic field in a first direction, and a first yoke that includes a first portion that is located on a side of the first magnetic field sensing film 38 with respect to the first direction, and a second portion that is in contact with the first portion in a direction that is orthogonal to the first direction. The average dimension of the second portion in the first direction is larger than the average dimension of the first portion in the first direction.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 26, 2020
    Inventors: Naoki OHTA, Keisuke TAKASUGI
  • Publication number: 20200072664
    Abstract: A resistive element array circuit includes word lines, bit lines, resistive elements, a selector, a differential amplifier, and a ground terminal. The word lines are coupled to a power supply. The resistive elements are each disposed at an intersection of corresponding one of the word lines and corresponding one of the bit lines. The selector is configured to select one word line and one bit line. The differential amplifier includes a positive input terminal configured to be coupled to the selected one of the bit lines which is selected by the selector, a negative input terminal configured to be coupled to non-selected one of the bit lines which is not selected by the selector and to non-selected one of the word lines which is not selected by the selector, an output terminal being coupled to the negative input terminal. The ground terminal is coupled to the positive input terminal.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Applicant: TDK CORPORATION
    Inventors: Naoki OHTA, Yuji KAKINUMA, Shinji HARA, Susumu AOKI, Keita KAWAMORI, Eiji KOMURA