Patents by Inventor Naoki Uchiyama

Naoki Uchiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180350682
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 6, 2018
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 10068801
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: September 4, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 9993841
    Abstract: A particulate film laminating system includes: a nanoparticle generating chamber in which nanoparticles of a metal material are generated; a nanofiber generating chamber in which nanofibers of a resin material are generated; a laminating chamber in which the nanoparticles and the nanofibers are film-formed and laminated on a substrate; a nanoparticle film-forming region configured such that the nanoparticles are film-formed in the laminating chamber; a nanofiber film-forming region configured such that the nanofibers are film-formed in the laminating chamber; a moving unit which moves the substrate between the nanoparticle film-forming region and the nanofiber film-forming region; an exhaust unit which exhausts the laminating chamber; and a coolant-gas introduction unit which introduces coolant gas into each of the nanoparticle generating chamber and the nanofiber generating chamber.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 12, 2018
    Assignee: KABUSHIKI KAISHA ATSUMITEC
    Inventors: Naoki Uchiyama, Tomomi Kanai
  • Publication number: 20180093885
    Abstract: The system comprises a steam reforming unit to produce hydrogen from exhaust gas supplied, a hydrogen permeable membrane to allow only hydrogen produced by the steam reforming unit to pass through it, a hydrogen storage unit to absorb hydrogen supplied through the hydrogen permeable membrane and release absorbed hydrogen, a fuel cell to generate power using hydrogen supplied from the hydrogen storage unit, a gas clean-up unit to clean up residual gases delivered not passing through the hydrogen permeable membrane, and a control unit to control the hydrogen storage unit to absorb or release hydrogen depending on whether the fuel cell is supplied with sufficient hydrogen.
    Type: Application
    Filed: March 4, 2016
    Publication date: April 5, 2018
    Inventor: Naoki Uchiyama
  • Publication number: 20180068897
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein at pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA, Toshimitsu WAKUDA
  • Patent number: 9887340
    Abstract: The thermoelectric conversion module includes a porous insulating film having an insulation property and a thermoelectric conversion element in a thin film shape formed on a first surface of the insulating film, the first surface includes a surface inclined to a second surface positioned on an opposite side of the first surface, and a density of the insulating film increases as a distance between the first surface and the second surface decreases.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: February 6, 2018
    Assignee: Atsumitec Co., Ltd.
    Inventors: Naoki Uchiyama, Kazuya Kubo
  • Patent number: 9837315
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: December 5, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda
  • Publication number: 20170271210
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 9711405
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 18, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 9678368
    Abstract: To provide a self-dimming system including: a main body section which is configured by a pair of transparent substrates arranged to face each other and to be separated from each other, and a frame body holding the pair of transparent substrates and forming a gap together with the pair of transparent substrates; a dimming section which is arranged in the gap and provided with a dimming element whose optical properties are reversibly changed by hydrogenation and dehydrogenation of the dimming element; a power-generating equipment which is arranged in the main body section; a hydrogen suction and discharge section which, when receiving electric power generated in the power-generating equipment, generates hydrogen by performing electrolysis and supplies the hydrogen to the gap and which, when not receiving electric power generated in the power-generating equipment, generates electric power by using the hydrogen in the gap; and control means which controls whether or not electric power generated in the power-gener
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: June 13, 2017
    Assignee: ATSUMITEC CO., LTD.
    Inventors: Naoki Uchiyama, Tomomi Kanai
  • Publication number: 20170113186
    Abstract: An exhaust gas purification system which is capable of purifying exhaust gas without a noble metal being carried, and maintaining exhaust gas purification performance even at high temperatures; a catalyst; and an exhaust gas purification method are disclosed. A foamed metal catalyst which is made of a transition metal element excepting platinum group elements and is formed of a metal having a porosity of not less than 80%, and which reduces NOx by being brought into contact with an exhaust gas having a hydrogen concentration of not less than a predetermined concentration (e.g., 2%) and a temperature of not less than 230° C., is provided in an exhaust gas passage of an internal combustion engine that discharges the exhaust gas.
    Type: Application
    Filed: March 30, 2015
    Publication date: April 27, 2017
    Inventors: Naoki Uchiyama, Yasuyuki Uchiyama, Seigou Nakabayashi
  • Patent number: 9553023
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 24, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 9548246
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 17, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20170012191
    Abstract: To provide a manufacturing method of a thermoelectric conversion element, including: a holding step of holding thermoelectric conversion members (2, 3) while exposing at least one side end portions of at least one of the thermoelectric conversion members; a coating step of coating the exposed end portions of the thermoelectric conversion member with metal powder (13); and an electrode forming step of forming an electrode (4a ) at the end portions of the thermoelectric conversion member by sintering the metal powder.
    Type: Application
    Filed: January 21, 2015
    Publication date: January 12, 2017
    Inventors: Naoki Uchiyama, Kazuya Kubo
  • Patent number: 9543256
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 10, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 9543207
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 10, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20160343674
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Publication number: 20160343618
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Publication number: 20160343617
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Publication number: 20160343619
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA