Patents by Inventor Naoki Uchiyama

Naoki Uchiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100203707
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20100203678
    Abstract: A semiconductor substrate cutting method which can efficiently cut a semiconductor substrate having a front face formed with a functional device together with a die bonding resin layer is provided. A wafer 11 having a front face 3 formed with a functional device 15 is irradiated with laser light L while positioning a light-converging point P within the wafer 11 with the rear face 17 of the wafer 11 acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting 8 due to a molten processed region 13 within the wafer 11 along a line along which the substrate should be cut 5. Consequently, a fracture can be generated from the starting point region for cutting 8 naturally or with a relatively small force, so as to reach the front face 3 and rear face 17.
    Type: Application
    Filed: October 21, 2009
    Publication date: August 12, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kenshi FUKUMITSU, Fumitsuu FUKUYO, Naoki UCHIYAMA, Ryuji SUGIURA, Kazuhiro ATSUMI
  • Publication number: 20100190603
    Abstract: When a drive wheel (3) of a vehicle is driven by a motor generator (10) that operates as a motor, electric power is supplied from a storage battery (20) to the motor generator (10). When the drive wheel (3) is braked by the motor generator (10) that operates as a generator, electric power is supplied from the motor generator (10) to the storage battery (20), and a first thermoelectric conversion element (11) is supplied with electric power from the motor generator (10) to cool the motor generator (10).
    Type: Application
    Filed: July 4, 2008
    Publication date: July 29, 2010
    Inventor: Naoki Uchiyama
  • Publication number: 20100178209
    Abstract: In a hydrogen sensor (10a, 10b, 10c, 10d), a thin film layer (12) is formed over a substrate (11) and a buffer layer (13) is formed over the thin film layer (12). Further, over the buffer layer (13) is formed a catalyst layer (14) which, by being contacted by hydrogen gas, hydrogenates the thin film layer (12), thereby changing optical reflectance of the thin film layer (12). A constituent of the thin film layer (12) diffusing into the catalyst layer (14) combines with a constituent that has diffused from the buffer layer (13) into the catalyst layer (14), so that oxidation of the catalyst film layer (14) is prevented. Consequently, oxidation of the catalyst layer (14), etc. caused by repetition of hydrogenation of the thin film layer (12) is prevented, and therefore, decrease in hydrogen detection sensitivity of the hydrogen sensor (10a, 10b, 10c, 10d) is restrained.
    Type: Application
    Filed: May 28, 2008
    Publication date: July 15, 2010
    Applicants: Kabushiki Kaisha Atsumitec, National Institute of Advanced Industrial Science
    Inventors: Naoki Uchiyama, Kazuki Yoshimura
  • Publication number: 20100176100
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20100166614
    Abstract: A hydrogen-gas concentration sensor comprises a substrate, and a plurality of hydrogen detecting films formed on the substrate, adjacent to one another. The hydrogen detecting films have a thin film layer, and a catalyst layer formed on the thin film layer. Each catalyst layer, when in contact with a hydrogen gas, exerts photocatalysis to hydrogenate each thin film layer reversibly and causes the electric resistance value thereof to change reversibly. The individual thin film layers have different sensitivities of a change in the hydrogen gas concentration vs. a change in the resistance value and different hydrogen gas concentration measurement ranges. The hydrogen-gas concentration sensor measures the hydrogen gas concentration with a thin film layer having a high sensitivity when the hydrogen gas concentration is low, and measures the hydrogen gas concentration with a thin film layer having a wide measurement range when the hydrogen gas concentration is high.
    Type: Application
    Filed: June 21, 2007
    Publication date: July 1, 2010
    Applicant: KABUSHIKI KAISHA ATSUMITEC
    Inventors: Naoki Uchiyama, Tomomi Kanai
  • Patent number: 7732730
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 8, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda
  • Publication number: 20100136766
    Abstract: An object to be processed is reliably cut along a line to cut. An object to be processed is irradiated with laser light while locating a converging point at the object, so as to form a modified region in the object along a line to cut. The object formed with the modified region is subjected to an etching process utilizing an etching liquid exhibiting a higher etching rate for the modified region than for an unmodified region, so as to etch the modified region. This can etch the object selectively and rapidly along the line to cut by utilizing a higher etching rate in the modified region.
    Type: Application
    Filed: May 23, 2008
    Publication date: June 3, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi Sakamoto, Hideki Shimoi, Naoki Uchiyama
  • Patent number: 7687030
    Abstract: A hydrogen gas visualization device comprises a hydrogen sensor having a thin film layer formed on the surface of a substrate and a catalyst layer formed on the surface of the thin film layer which, when contacted by hydrogen gas contained in an atmosphere, hydrogenates the thin film layer and thereby changes the optical reflectance of the thin film layer, and one or more sensor faces provided with the hydrogen sensor. The hydrogen gas visualization device visualizes, on the sensor faces, the distribution of hydrogen gas contained in the atmosphere contacting the hydrogen sensor and thereby visualizes the existence and flow of the hydrogen gas.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 30, 2010
    Assignee: Kabushiki Kaisha ATSUMITEC
    Inventors: Naoki Uchiyama, Hiroyuki Matsumoto
  • Publication number: 20100055876
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 4, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20100054999
    Abstract: A hydrogen sensor includes a thin film layer formed on a top surface of a planar optical transmission medium, and a catalyst layer formed on a top surface of the thin film layer. A first interface is created between the planar optical transmission medium and the thin film layer. A substrate is joined to a bottom surface of the planar optical transmission medium so that a second interface is created between the planar optical transmission medium and the substrate. On entering a first end portion of the planer optical transmission medium, light from a light source is spread by an entrance section, and the spread light is transmitted inside the planar optical transmission medium to a second end portion by being reflected by the first and second interfaces alternately. Light exiting from the second end portion is transmitted to an optical sensor by an exit light-collecting section.
    Type: Application
    Filed: July 10, 2007
    Publication date: March 4, 2010
    Applicant: KABUSHIKI KAISHA ATSUMITEC
    Inventors: Naoki Uchiyama, Naoki Matsuda, Kazuki Yoshimura, Kenji Kato
  • Patent number: 7626137
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: December 1, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Patent number: 7615721
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: November 10, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20090236324
    Abstract: An object to be processed 1 is irradiated with laser light L with a standard pulse waveform, so as to form a molten processed region 131, which has a larger size in the thickness direction of the object 1 and is easy to generate a fracture 24 in the thickness direction of the object 1, within a silicon wafer 111, and with laser light L with a retarded pulse waveform, so as to form a molten processed region 132, which has a smaller size in the thickness direction of the object 1 and is hard to generate the fracture 24 in the thickness direction of the object 1, within a silicon wafer 112.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 24, 2009
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Etsuji Ohmura, Kenshi Fukumitsu, Masayoshi Kumagai, Kazuhiro Atsumi, Naoki Uchiyama
  • Patent number: 7592238
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 22, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20090202881
    Abstract: A solid-oxide fuel cell having a fuel pole and an air pole joined to a solid oxide electrolyte is arranged in a combustion exhaust gas flow channel of an engine or the like (fuel cell containing section), thereby placed in a flow of high-temperature combustion exhaust gas introduced through an exhaust gas introduction section into the fuel cell containing section and discharged through an exhaust gas discharge section, so that the solid-oxide fuel cell is heated by the thermal energy of the combustion exhaust gas and generates electric power using a hydrocarbon compound and carbon oxide in the combustion exhaust gas, as fuel gas.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 13, 2009
    Inventor: Naoki Uchiyama
  • Patent number: 7566635
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: July 28, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 7547613
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 16, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20090135425
    Abstract: In a hydrogen gas detection device, light emitted from a light source is irradiated onto a hydrogen sensor whose reflectance (optical reflectance) varies upon contact with hydrogen gas, and the light transmitted through the hydrogen sensor or reflected by a reflective film of the hydrogen sensor is received by an optical sensor. On the basis of the signal output from the optical sensor and indicative of the amount of light received, the hydrogen gas detection device detects leakage of hydrogen gas.
    Type: Application
    Filed: February 15, 2007
    Publication date: May 28, 2009
    Applicant: Kabushiki Kaisha Atsumitec
    Inventor: Naoki Uchiyama
  • Publication number: 20090087691
    Abstract: An electric power generation device includes a cell body and a secondary electric power generator. The cell body has an electrolyte, a fuel electrode and an air electrode. The secondary electric power generator is joined to at least one of the fuel and air electrodes and includes P- and N-type thermoelectric conversion members. With the electric power generation device, the cell body generates electric power at temperatures higher than or equal to an power generation start temperature, and at the same time, the P- and N-type thermoelectric conversion members joined to the cell body and functioning as a thermocouple produce electric power by utilizing the Seebeck effect.
    Type: Application
    Filed: February 15, 2007
    Publication date: April 2, 2009
    Applicant: KABUSHIKI KAISHA ATSUMITEC
    Inventor: Naoki Uchiyama