Patents by Inventor Naoko Kodama

Naoko Kodama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240154003
    Abstract: Provided is a semiconductor device in which a boundary region between a transistor portion and a diode portion includes: a first portion which is in contact with the transistor portion and is not provided with a lifetime adjustment region; and a second portion which is in contact with the diode portion and to which the lifetime adjustment region of the diode portion extends, a density distribution of a lifetime killer in a first direction has a lateral slope where a density of the lifetime killer decreases from the second portion of the boundary region toward the first portion, a width of the first portion is smaller than a width of the second portion in the first direction, and the width of the first portion is equal to or larger than a width of the lateral slope in the first direction.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 9, 2024
    Inventors: Yosuke SAKURAI, Tatsuya NAITO, Seiji NOGUCHI, Motoyoshi KUBOUCHI, Naoko KODAMA, Hiroshi TAKISHITA
  • Patent number: 11972950
    Abstract: There is provided a semiconductor device, a hydrogen concentration distribution has a hydrogen concentration peak, a helium concentration distribution has a helium concentration peak, and a donor concentration distribution has a first donor concentration peak and a second donor concentration peak; the hydrogen concentration peak and the first donor concentration peak are located at a first depth, and the helium concentration peak and the second donor concentration peak are located at a second depth; each concentration peak has an upward slope; and a value which is obtained by normalizing a gradient of the upward slope of the second donor concentration peak by a gradient of the upward slope of the helium concentration peak is smaller than a value which is obtained by normalizing a gradient of the upward slope of the first donor concentration peak by a gradient of the upward slope of the hydrogen concentration peak.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 30, 2024
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Misaki Meguro, Takashi Yoshimura, Hiroshi Takishita, Naoko Kodama, Yasunori Agata
  • Publication number: 20240047535
    Abstract: A semiconductor device, including a semiconductor substrate having a transistor portion and a diode portion, a drift region of a first conductivity type provided in the semiconductor substrate, a first electrode provided on one main surface side of the semiconductor substrate, and a second electrode provided on another main surface side of the semiconductor substrate, is provided. The diode portion includes a high concentration region and a crystalline defect region. The high concentration region has a higher doping concentration than the drift region and includes hydrogen. The doping concentration of the high concentration region at a peak position in a depth direction of the semiconductor substrate is equal to or less than 1.0×1015/cm3. The crystalline defect region is provided on the one main surface side of the semiconductor substrate relative to the peak position, has a higher crystalline defect density than the drift region, and includes hydrogen.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 8, 2024
    Inventors: Takashi YOSHIMURA, Yuichi ONOZAWA, Hiroshi TAKISHITA, Misaki MEGURO, Motoyoshi KUBOUCHI, Naoko KODAMA
  • Publication number: 20240036486
    Abstract: Provided is a manufacturing method of a semiconductor apparatus including: detecting a position by detecting positional deviation of the upper surface mark and the lower surface mark, by acquiring an upper surface image obtained by observing the upper surface mark from above the upper surface of the semiconductor substrate and a lower surface image obtained by observing the lower surface mark through the semiconductor substrate from above the upper surface of the semiconductor substrate; and forming an element by forming a semiconductor element in the semiconductor substrate, where in a top view in which the upper surface mark and the lower surface mark are projected onto a plane parallel to the upper surface, one of the upper surface mark and the lower surface mark is larger than an other, and the one entirely covers the other.
    Type: Application
    Filed: June 18, 2023
    Publication date: February 1, 2024
    Inventors: Kazuhiro KITAHARA, Naoko KODAMA
  • Patent number: 11824095
    Abstract: Provided is a semiconductor device including a semiconductor substrate; a hydrogen donor that is provide inside the semiconductor substrate in a depth direction, has a doping concentration that is higher than a doping concentration of a dopant of the semiconductor substrate, has a doping concentration distribution peak at a first position that is a predetermined distance in the depth direction of the semiconductor substrate away from one main surface of the semiconductor substrate, and has a tail of the doping concentration distribution where the doping concentration is lower than at the peak, farther on the one main surface side than where the first position is located; and a crystalline defect region having a crystalline defect density center peak at a position shallower than the first position, in the depth direction of the semiconductor substrate.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: November 21, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Yoshimura, Yuichi Onozawa, Hiroshi Takishita, Misaki Meguro, Motoyoshi Kubouchi, Naoko Kodama
  • Publication number: 20230360915
    Abstract: A semiconductor device including a semiconductor substrate having an upper surface and a lower surface is provided. In a depth direction connecting the upper and lower surfaces of the semiconductor substrate, a donor concentration distribution includes a first donor concentration peak at a first depth, a second donor concentration peak at a second depth between the first donor concentration peak and the upper surface, a flat region between the first donor concentration peak and the second donor concentration peak, and a plurality of donor concentration peaks between the first donor concentration peak and the lower surface. The second donor concentration peak has a lower concentration than the first donor concentration peak. The donor concentration distribution in the flat region is substantially flat. The thickness of the flat region in the depth direction is 10% or more of the thickness of the semiconductor substrate.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Inventors: Yasunori AGATA, Takashi YOSHIMURA, Hiroshi TAKISHITA, Misaki MEGURO, Naoko KODAMA, Yoshihiro IKURA, Seiji NOGUCHI, Yuichi HARADA, Yosuke SAKURAI
  • Patent number: 11735424
    Abstract: A semiconductor device comprising a semiconductor substrate including an upper surface and a lower surface wherein a donor concentration of a drift region is higher than a base doping concentration of the semiconductor substrate, entirely over the drift region in a depth direction connecting the upper surface and the lower surface is provided.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: August 22, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yasunori Agata, Takashi Yoshimura, Hiroshi Takishita, Misaki Meguro, Naoko Kodama, Yoshihiro Ikura, Seiji Noguchi, Yuichi Harada, Yosuke Sakurai
  • Patent number: 11621158
    Abstract: A method of manufacturing a semiconductor device, including preparing a semiconductor wafer having first and second main surfaces opposite to each other, forming a photoresist film on the first main surface of the semiconductor wafer, forming a plurality of openings at predetermined positions in the photoresist film, cleaning the semiconductor wafer with water after the openings are formed, drying the semiconductor wafer by rotating the semiconductor wafer around a center axis that is orthogonal to the first main surface of the semiconductor wafer, to thereby generate a centrifugal force to cause the water that is left in the openings of the photoresist film to fly off the semiconductor wafer, and ion-implanting a predetermined impurity by a predetermined acceleration energy from the first main surface of the semiconductor wafer, using the photoresist film as a mask, after the drying. The drying process includes setting a rotational speed of the semiconductor wafer to be at most an upper limit value.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 4, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Naoko Kodama
  • Publication number: 20230027894
    Abstract: Provided is a semiconductor device including: a semiconductor substrate provided with an active portion and an edge termination structure portion surrounding the active portion; an interlayer dielectric film provided above the semiconductor substrate; a protective film provided above the interlayer dielectric film; and a protruding portion provided farther from the active portion than the edge termination structure portion and protruding further than the interlayer dielectric film. The protruding portion is not covered with the protective film. The protective film is provided closer to the active portion than the protruding portion.
    Type: Application
    Filed: May 17, 2022
    Publication date: January 26, 2023
    Inventors: Tsuneyuki MATSUSHIMA, Kazuhiro KITAHARA, Naoko KODAMA
  • Publication number: 20220277959
    Abstract: A semiconductor device comprising a semiconductor substrate including an upper surface and a lower surface wherein a donor concentration of a drift region is higher than a base doping concentration of the semiconductor substrate, entirely over the drift region in a depth direction connecting the upper surface and the lower surface is provided.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: Yasunori AGATA, Takashi YOSHIMURA, Hiroshi TAKISHITA, Misaki MEGURO, Naoko KODAMA, Yoshihiro IKURA, Seiji NOGUCHI, Yuichi HARADA, Yosuke SAKURAI
  • Patent number: 11342186
    Abstract: A semiconductor device wherein a hydrogen concentration distribution has a first hydrogen concentration peak and a second hydrogen concentration peak and a donor concentration distribution has a first donor concentration peak and a second donor concentration peak in a depth direction, wherein the first hydrogen concentration peak and the first donor concentration peak are placed at a first depth and the second hydrogen concentration peak and the second donor concentration peak are placed at a second depth deeper than the first depth relative to the lower surface is provided.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: May 24, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yasunori Agata, Takashi Yoshimura, Hiroshi Takishita, Misaki Meguro, Naoko Kodama, Yoshihiro Ikura, Seiji Noguchi, Yuichi Harada, Yosuke Sakurai
  • Publication number: 20220140091
    Abstract: Provided is a semiconductor device including a semiconductor substrate; a hydrogen donor that is provide inside the semiconductor substrate in a depth direction, has a doping concentration that is higher than a doping concentration of a dopant of the semiconductor substrate, has a doping concentration distribution peak at a first position that is a predetermined distance in the depth direction of the semiconductor substrate away from one main surface of the semiconductor substrate, and has a tail of the doping concentration distribution where the doping concentration is lower than at the peak, farther on the one main surface side than where the first position is located; and a crystalline defect region having a crystalline defect density center peak at a position shallower than the first position, in the depth direction of the semiconductor substrate.
    Type: Application
    Filed: January 17, 2022
    Publication date: May 5, 2022
    Inventors: Takashi YOSHIMURA, Yuichi ONOZAWA, Hiroshi TAKISHITA, Misaki MEGURO, Motoyoshi KUBOUCHI, Naoko KODAMA
  • Patent number: 11239324
    Abstract: Provided is a semiconductor device including a semiconductor substrate; a hydrogen donor that is provide inside the semiconductor substrate in a depth direction, has a doping concentration that is higher than a doping concentration of a dopant of the semiconductor substrate, has a doping concentration distribution peak at a first position that is a predetermined distance in the depth direction of the semiconductor substrate away from one main surface of the semiconductor substrate, and has a tail of the doping concentration distribution where the doping concentration is lower than at the peak, farther on the one main surface side than where the first position is located; and a crystalline defect region having a crystalline defect density center peak at a position shallower than the first position, in the depth direction of the semiconductor substrate.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: February 1, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Yoshimura, Yuichi Onozawa, Hiroshi Takishita, Misaki Meguro, Motoyoshi Kubouchi, Naoko Kodama
  • Patent number: 11222851
    Abstract: A back alignment mark on a surface of a semiconductor substrate is detected and a resist mask patterned into a circuit pattern corresponding to a surface element structure is formed on a back of the semiconductor substrate. Detection of the back alignment mark is performed by using a detector opposing the back of the semiconductor substrate and measuring contrast based on the intensity of reflected infrared light irradiated from the back of the semiconductor substrate. The back alignment mark is configured by a step formed by the surface of the semiconductor substrate and bottoms of trenches formed from the surface of the semiconductor substrate. A polysilicon film is embedded in the trenches. The back alignment mark has, for example, a cross-shaped planar layout in which three or more trenches are disposed in a direction parallel to the surface of the semiconductor substrate.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 11, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Naoko Kodama
  • Publication number: 20210398812
    Abstract: A method of manufacturing a semiconductor device, including preparing a semiconductor substrate having a main surface, forming a device element structure on the main surface, forming a protective film on the main surface of the semiconductor substrate to protect the device element structure, the protective film having an opening therein, forming at least one material film in a predetermined pattern on the main surface of the semiconductor substrate and in the opening of the protective film, the at least one material film being separate from the protective film by a distance of less than 1 mm, forming a resist film on the main surface of the semiconductor substrate, covering the protective film and the at least one material film, the resist film having an opening therein corresponding to an inducing region for impurity defects, and inducing the impurity defects in the semiconductor substrate, using the resist film as a mask.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 23, 2021
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Naoko KODAMA, Motoyoshi KUBOUCHI
  • Publication number: 20210272797
    Abstract: A method of manufacturing a semiconductor device, including preparing a semiconductor wafer having first and second main surfaces opposite to each other, forming a photoresist film on the first main surface of the semiconductor wafer, forming a plurality of openings at predetermined positions in the photoresist film, cleaning the semiconductor wafer with water after the openings are formed, drying the semiconductor wafer by rotating the semiconductor wafer around a center axis that is orthogonal to the first main surface of the semiconductor wafer, to thereby generate a centrifugal force to cause the water that is left in the openings of the photoresist film to fly off the semiconductor wafer, and ion-implanting a predetermined impurity by a predetermined acceleration energy from the first main surface of the semiconductor wafer, using the photoresist film as a mask, after the drying. The drying process includes setting a rotational speed of the semiconductor wafer to be at most an upper limit value.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 2, 2021
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Naoko KODAMA
  • Publication number: 20210104407
    Abstract: There is provided a semiconductor device, a hydrogen concentration distribution has a hydrogen concentration peak, a helium concentration distribution has a helium concentration peak, and a donor concentration distribution has a first donor concentration peak and a second donor concentration peak; the hydrogen concentration peak and the first donor concentration peak are located at a first depth, and the helium concentration peak and the second donor concentration peak are located at a second depth; each concentration peak has an upward slope; and a value which is obtained by normalizing a gradient of the upward slope of the second donor concentration peak by a gradient of the upward slope of the helium concentration peak is smaller than a value which is obtained by normalizing a gradient of the upward slope of the first donor concentration peak by a gradient of the upward slope of the hydrogen concentration peak.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 8, 2021
    Inventors: Misaki MEGURO, Takashi YOSHIMURA, Hiroshi TAKISHITA, Naoko KODAMA, Yasunori AGATA
  • Publication number: 20210082702
    Abstract: A semiconductor device wherein a hydrogen concentration distribution has a first hydrogen concentration peak and a second hydrogen concentration peak and a donor concentration distribution has a first donor concentration peak and a second donor concentration peak in a depth direction, wherein the first hydrogen concentration peak and the first donor concentration peak are placed at a first depth and the second hydrogen concentration peak and the second donor concentration peak are placed at a second depth deeper than the first depth relative to the lower surface is provided.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 18, 2021
    Inventors: Yasunori AGATA, Takashi YOSHIMURA, Hiroshi TAKISHITA, Misaki MEGURO, Naoko KODAMA, Yoshihiro IKURA, Seiji NOGUCHI, Yuichi HARADA, Yosuke SAKURAI
  • Patent number: 10910319
    Abstract: A back alignment mark on a surface of a semiconductor substrate is detected and a resist mask patterned into a circuit pattern corresponding to a surface element structure is formed on a back of the semiconductor substrate. Detection of the back alignment mark is performed by using a detector opposing the back of the semiconductor substrate and measuring contrast based on the intensity of reflected infrared light irradiated from the back of the semiconductor substrate. The back alignment mark is configured by a step formed by the surface of the semiconductor substrate and bottoms of trenches formed from the surface of the semiconductor substrate. A polysilicon film is embedded in the trenches. The back alignment mark has, for example, a cross-shaped planar layout in which three or more trenches are disposed in a direction parallel to the surface of the semiconductor substrate.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: February 2, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Naoko Kodama
  • Patent number: 10867798
    Abstract: A photoresist is applied to a front surface of a semiconductor wafer rotating at a predetermined rotational speed and a photoresist film having a predetermined thickness is formed and dried. Next, a chemical is dripped while the semiconductor wafer is rotated at the predetermined rotational speed or less, whereby an edge part of the photoresist film is dissolved and removed by the chemical while the predetermined thickness of the photoresist film is maintained. A predetermined pattern is transferred to the photoresist film by exposure and development. After the development, without performing UV curing or post-bake, the photoresist film is used as a mask and helium irradiation having a range of 8 ?m or greater from the front surface of the semiconductor wafer is performed. Thus, a predetermined impurity may be implanted with good positioning accuracy in a predetermined region, using the photoresist film as a mask and cost may be reduced.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: December 15, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Naoko Kodama