Patents by Inventor Naoya Furutake

Naoya Furutake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8198730
    Abstract: A semiconductor device has a multilayer interconnection including a copper interconnection film formed in a predetermined area within an insulating film, a liner film, and a high-melting-point metal film. The copper interconnection film is polycrystalline, and crystal grains occupying 40% or more of an area of a unit interconnection surface among crystal grains forming the polycrystal are oriented to (111) in a substrate thickness direction. The copper interconnection film has crystal conformity with the noble metal liner film. In a case where the high-melting-point metal film is formed of Ti and the noble metal liner film is a Ru film, the high-melting-point metal of Ti dissolves into Ru in a solid state to form the noble metal liner. Thus, a copper interconnection is formed with both of Cu diffusion barrier characteristics and Cu crystal conformity.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: June 12, 2012
    Assignee: NEC Corporation
    Inventors: Masayoshi Tagami, Yoshihiro Hayashi, Munehiro Tada, Takahiro Onodera, Naoya Furutake, Makoto Ueki, Mari Amano
  • Patent number: 8174122
    Abstract: A trench is formed in an insulation film formed on top of a semiconductor substrate, and a barrier metal film is formed on the surface of the trench. After a copper or copper alloy film is formed on the barrier metal film, an oxygen absorption film in which a standard energy of formation of an oxidation reaction in a range from room temperature to 400° C. is negative, and in which an absolute value of the standard energy of formation is larger than that of the barrier metal film is formed, and the assembly is heated in a temperature range of 200 to 400° C. A semiconductor device can thereby be provided that has highly reliable wiring, in which the adhesion to the barrier metal film in the copper interface is enhanced, copper diffusion in the interface is suppressed, and electromigration and stress migration are prevented.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: May 8, 2012
    Assignee: NEC Corporation
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Publication number: 20110272813
    Abstract: A method of manufacturing a semiconductor device includes: forming a cap insulating film, including Si and C, on a substrate; forming an organic silica film, having a composition ratio of the number of carbon atoms to the number of silicon atoms higher than that of the cap insulating film, on the cap insulating film; and forming two or more concave portions, having different opening diameters, in the organic silica film, by plasma processing in which mixed gas including inert gas, N-containing gas, fluorocarbon gas and oxidant gas is used.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 10, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Ippei KUME, Jun KAWAHARA, Naoya FURUTAKE, Shinobu SAITOU, Yoshihiro HAYASHI
  • Publication number: 20110266678
    Abstract: A semiconductor device includes a semiconductor substrate, an insulating film formed above the semiconductor substrate, and a multilayered wiring formed in a prescribed area within the insulating film. The multilayered wiring includes a dual damascene wiring positioned on at least one layer of the multilayered wiring. The dual damascene wiring includes an alloy having copper as a principal component. A concentration of at least one metallic element contained as an added component of the alloy in a via connected to the dual damascene wiring is 10% or more higher in a via connected to a wiring whose width exceeds by five or more times a diameter of the via than that in another via connected to another wiring of a smallest width in a same upper wiring layer of the multilayered wiring.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: NEC CORPORATION
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Patent number: 8004087
    Abstract: A multilayered wiring is formed in a prescribed area in an insulating film that is formed on a semiconductor substrate. Dual damascene wiring that is positioned on at least one layer of the multilayered wiring is composed of an alloy having copper as a principal component. The concentration of at least one metallic element contained in the alloy as an added component in vias of the dual damascene wiring is determined according to the differences in the width of the wiring of an upper layer where the vias are connected. Specifically, a larger wiring width in the upper layer corresponds to a higher concentration of at least one metallic element within the connected vias. Accordingly, increases in the resistance of the wiring are minimized, the incidence of stress-induced voids is reduced, and reliability can be improved.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: August 23, 2011
    Assignee: NEC Corporation
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Patent number: 7923384
    Abstract: In a formation method of a porous insulating film by supplying at least organosiloxane and an inert gas to a reaction chamber and forming an insulating film by a plasma vapor deposition method, a partial pressure of the organosiloxane in the reaction chamber is changed by varying a volume ratio of the organosiloxane and the inert gas to be supplied during deposition. Thus, the dielectric constant of the insulating film in the semiconductor device is reduced while the adhesion of the insulating film with other materials is improved. It is desirable that the organosiloxane be cyclic organosiloxane including at least silicon, oxygen, carbon, and hydrogen, and that the total pressure of the reaction chamber be constant during deposition.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: April 12, 2011
    Assignee: NEC Corporation
    Inventors: Munehiro Tada, Naoya Furutake, Tsuneo Takeuchi, Yoshihiro Hayashi
  • Publication number: 20110068472
    Abstract: A trench is formed in an insulation film formed on top of a semiconductor substrate, and a barrier metal film is formed on the surface of the trench. After a copper or copper alloy film is formed on the barrier metal film, an oxygen absorption film in which a standard energy of formation of an oxidation reaction in a range from room temperature to 400° C. is negative, and in which an absolute value of the standard energy of formation is larger than that of the barrier metal film is formed, and the assembly is heated in a temperature range of 200 to 400° C. A semiconductor device can thereby be provided that has highly reliable wiring, in which the adhesion to the barrier metal film in the copper interface is enhanced, copper diffusion in the interface is suppressed, and electromigration and stress migration are prevented.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Applicant: NEC CORPORATION
    Inventors: Mari AMANO, Munehiro TADA, Naoya FURUTAKE, Yoshihiro HAYASHI
  • Patent number: 7867906
    Abstract: A trench is formed in an insulation film formed on top of a semiconductor substrate, and a barrier metal film is formed on the surface of the trench. After a copper or copper alloy film is formed on the barrier metal film, an oxygen absorption film in which a standard energy of formation of an oxidation reaction in a range from room temperature to 400° C. is negative, and in which an absolute value of the standard energy of formation is larger than that of the barrier metal film is formed, and the assembly is heated in a temperature range of 200 to 400° C. A semiconductor device can thereby be provided that has highly reliable wiring, in which the adhesion to the barrier metal film in the copper interface is enhanced, copper diffusion in the interface is suppressed, and electromigration and stress migration are prevented.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: January 11, 2011
    Assignee: NEC Corporation
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Publication number: 20100219512
    Abstract: A method for forming porous insulating film using cyclic siloxane raw material monomer is provided, which method suppresses detachment of hydrocarbon and is able to form a low-density film. In a method where at least cyclic organosiloxane raw material 101 is supplied to a reaction chamber and an insulating film is formed by plasma vapor deposition method, above-mentioned problem is solved by a method for a forming porous insulating film using the mixed gas of a cyclic organosiloxane raw material 101 and a compound raw material 103 including a part of chemical structure comprising the cyclic organosiloxane raw material 101. The compound raw material 103 is preferably a compound including a part of side chain of the cyclic organosiloxane raw material 101.
    Type: Application
    Filed: September 8, 2006
    Publication date: September 2, 2010
    Applicant: NEC COPORATION
    Inventors: Munehiro Tada, Naoya Furutake, Tsuneo Takeuchi, Yoshihiro Hayashi
  • Publication number: 20100193953
    Abstract: A trench is formed in an insulation film formed on top of a semiconductor substrate, and a barrier metal film is formed on the surface of the trench. After a copper or copper alloy film is formed on the barrier metal film, an oxygen absorption film in which a standard energy of formation of an oxidation reaction in a range from room temperature to 400° C. is negative, and in which an absolute value of the standard energy of formation is larger than that of the barrier metal film is formed, and the assembly is heated in a temperature range of 200 to 400° C. A semiconductor device can thereby be provided that has highly reliable wiring, in which the adhesion to the barrier metal film in the copper interface is enhanced, copper diffusion in the interface is suppressed, and electromigration and stress migration are prevented.
    Type: Application
    Filed: May 23, 2006
    Publication date: August 5, 2010
    Applicant: NEC CORPORATION
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Publication number: 20100096756
    Abstract: A semiconductor device has a multilayer interconnection including a copper interconnection film formed in a predetermined area within an insulating film, a liner film, and a high-melting-point metal film. The copper interconnection film is polycrystalline, and crystal grains occupying 40% or more of an area of a unit interconnection surface among crystal grains forming the polycrystal are oriented to (111) in a substrate thickness direction. The copper interconnection film has crystal conformity with the noble metal liner film. In a case where the high-melting-point metal film is formed of Ti and the noble metal liner film is a Ru film, the high-melting-point metal of Ti dissolves into Ru in a solid state to form the noble metal liner. Thus, a copper interconnection is formed with both of Cu diffusion barrier characteristics and Cu crystal conformity.
    Type: Application
    Filed: January 8, 2008
    Publication date: April 22, 2010
    Inventors: Masayoshi Tagami, Yoshihiro Hayashi, Munehiro Tada, Takahiro Onodera, Naoya Furutake, Makoto Ueki, Mari Amano
  • Publication number: 20090039474
    Abstract: In a formation method of a porous insulating film by supplying at least organosiloxane and an inert gas to a reaction chamber and forming an insulating film by a plasma vapor deposition method, a partial pressure of the organosiloxane in the reaction chamber is changed by varying a volume ratio of the organosiloxane and the inert gas to be supplied during deposition. Thus, the dielectric constant of the insulating film in the semiconductor device is reduced while the adhesion of the insulating film with other materials is improved. It is desirable that the organosiloxane be cyclic organosiloxane including at least silicon, oxygen, carbon, and hydrogen, and that the total pressure of the reaction chamber be constant during deposition.
    Type: Application
    Filed: November 24, 2006
    Publication date: February 12, 2009
    Inventors: Munehiro Tada, Naoya Furutake, Tsuneo Takeuchi, Yoshihiro Hayashi
  • Publication number: 20090026622
    Abstract: A multilayered wiring is formed in a prescribed area in an insulating film that is formed on a semiconductor substrate. Dual damascene wiring that is positioned on at least one layer of the multilayered wiring is composed of an alloy having copper as a principal component. The concentration of at least one metallic element contained in the alloy as an added component in vias of the dual damascene wiring is determined according to the differences in the width of the wiring of an upper layer where the vias are connected. Specifically, a larger wiring width in the upper layer corresponds to a higher concentration of at least one metallic element within the connected vias. Accordingly, increases in the resistance of the wiring are minimized, the incidence of stress-induced voids is reduced, and reliability can be improved.
    Type: Application
    Filed: August 12, 2005
    Publication date: January 29, 2009
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi