Patents by Inventor Naresh C. Bhavaraju

Naresh C. Bhavaraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071593
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 29, 2024
    Inventors: Anna Leigh DAVIS, Scott M. BELLIVEAU, Naresh C. BHAVARAJU, Leif N. BOWMAN, Rita M. CASTILLO, Alexandra Elena CONSTANTIN, Rian W. DRAEGER, Laura J. DUNN, Gary Brian GABLE, Arturo GARCIA, Thomas HALL, Hari HAMPAPURAM, Christopher Robert HANNEMANN, Anna Claire HARLEY-TROCHIMCZYK, Nathaniel David HEINTZMAN, Andrea Jean JACKSON, Lauren Hruby JEPSON, Apurv Ullas KAMATH, Katherine Yerre KOEHLER, Aditya Sagar MANDAPAKA, Samuel Jere MARSH, Gary A. MORRIS, Subrai Girish PAI, Andrew Attila PAL, Nicholas POLYTARIDIS, Philip Thomas PUPA, Eli REIHMAN, Ashley Anne RINDFLEISCH, Sofie Wells SCHUNK, Peter C. SIMPSON, Daniel S. SMITH, Stephen J. VANSLYKE, Matthew T. VOGEL, Tomas C. WALKER, Benjamin Elrod WEST, Atiim Joseph WILEY
  • Patent number: 11903697
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 20, 2024
    Assignee: DEXCOM, INC.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Karnath, Anna Leigh Davis, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 11883126
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: January 30, 2024
    Assignee: Dexcom, Inc.
    Inventors: Arturo Garcia, Peter C Simpson, Apurv U Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 11879887
    Abstract: Systems and methods for processing sensor data and end of life detection are provided. In some embodiments, a method for determining the end of life of a continuous analyte sensor includes evaluating a plurality of risk factors using an end of life function to determine an end of life status of the sensor and providing an output related to the end of life status of the sensor. The plurality of risk factors may be selected from the list including the number of days the sensor has been in use, whether there has been a decrease in signal sensitivity, whether there is a predetermined noise pattern, whether there is a predetermined oxygen concentration pattern, and error between reference BG values and EGV sensor values.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 23, 2024
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Hari Hampapuram, Apurv Ullas Kamath, Aarthi Mahalingam, Dmytro Sokolovskyy, Stephen J. Vanslyke
  • Patent number: 11872034
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: January 16, 2024
    Assignee: DEXCOM, INC.
    Inventors: Derek James Escobar, Naresh C. Bhavaraju, Gary A. Morris, Jorge Valdes
  • Patent number: 11837348
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: December 5, 2023
    Assignee: Dexcom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian W. Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea Jean Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel S. Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20230380736
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Application
    Filed: June 2, 2023
    Publication date: November 30, 2023
    Inventors: Naresh C. Bhavaraju, Sebastian Böhm, Robert Boock, Daiting Rong, Peter C. Simpson
  • Publication number: 20230371850
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 23, 2023
    Applicant: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 11766194
    Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration level. The glucose concentration level may be provided to a stored model to determine a state. The guidance may be determined based at least in part on the determined state.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: September 26, 2023
    Assignee: Dexcom, Inc.
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzman, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback, Subrai Girish Pai, Matthew T. Vogel
  • Patent number: 11737692
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: August 29, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Patent number: 11723560
    Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration data sensed by a glucose concentration sensor. A host state change associated with the host glucose concentration data may be determined. A guidance message based at least in part on the host state change may also be determined. The guidance message may be delivered through a user interface.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: August 15, 2023
    Assignee: Dexcom, Inc.
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzman, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback
  • Patent number: 11714060
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 1, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20230210474
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 6, 2023
    Inventors: Hari HAMPAPURAM, Anna Leigh DAVIS, Naresh C. BHAVARAJU, Apurv Ullas KAMATH, Claudio COBELLI, Giovanni SPARACINO, Andrea FACCHINETTI, Chiara ZECCHIN
  • Publication number: 20230210411
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user’s interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: February 28, 2023
    Publication date: July 6, 2023
    Applicant: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 11690577
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Dexcom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20230170090
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 1, 2023
    Inventors: Naresh C. BHAVARAJU, Arturo GARCIA, Phil MAYOU, Thomas A. PEYSER, Apurv Ullas KAMATH, Aarthi MAHALINGAM, Kevin SAYER, Thomas HALL, Michael Robert MENSINGER, Hari HAMPAPURAM, David PRICE, Jorge VALDES, Murrad KAZALBASH
  • Patent number: 11656195
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 23, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20230140651
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Application
    Filed: October 26, 2022
    Publication date: May 4, 2023
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv U. Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 11600384
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 7, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Phil Mayou, Thomas A. Peyser, Apurv Ullas Kamath, Aarthi Mahalingam, Kevin Sayer, Thomas Hall, Michael Robert Mensinger, Hari Hampapuram, David Price, Jorge Valdes, Murrad Kazalbash
  • Publication number: 20230013632
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Inventors: Anna Leigh DAVIS, Scott M. BELLIVEAU, Naresh C. BHAVARAJU, Leif N. BOWMAN, Rita M. CASTILLO, Alexandra Elena CONSTANTIN, Rian W. DRAEGER, Laura J. DUNN, Gary Brian GABLE, Arturo GARCIA, Thomas HALL, Hari HAMPAPURAM, Christopher Robert HANNEMANN, Anna Claire HARLEY-TROCHIMCZYK, Nathaniel David HEINTZMAN, Andrea Jean JACKSON, Lauren Hruby JEPSON, Apurv Ullas KAMATH, Katherine Yerre KOEHLER, Aditya Sagar MANDAPAKA, Samuel Jere MARSH, Gary A. MORRIS, Subrai Girish PAI, Andrew Attila PAL, Nicholas POLYTARIDIS, Philip Thomas PUPA, Eli REIHMAN, Ashley Anne RINDFLEISCH, Sofie Wells SCHUNK, Peter C. SIMPSON, Daniel S. SMITH, Stephen J. VANSLYKE, Matthew T. VOGEL, Tomas C. WALKER, Benjamin Elrod WEST, Atiim Joseph WILEY