Patents by Inventor Naseem Y. Aziz

Naseem Y. Aziz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366812
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 16, 2023
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230160751
    Abstract: Techniques for facilitating vacuum health detection for imaging systems and methods are provided. In one example, an imaging device includes a detector configured to generate a first reference signal. The imaging device further includes a buffer circuit configured to store a value of the first reference signal. The imaging device further includes a processing circuit coupled to the buffer circuit. The processing circuit is configured to determine a first predetermined value based on a first temperature associated with the detector. The processing circuit is further configured to determine vacuum integrity associated with the detector based at least on the value of the first reference signal and the first predetermined value. Related methods and systems are also provided.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 25, 2023
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Patent number: 11635370
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 25, 2023
    Assignee: FLIR Systems AB
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230063513
    Abstract: Techniques for facilitating unit cell selection verification systems and methods are provided. In one example, a method includes detecting, by each detector of a focal plane array (FPA), electromagnetic radiation. Each detector is selectively coupled to a readout circuit of the FPA via a selection circuit of the FPA. The method further includes, during a frame period, applying a predetermined signal pattern to a portion of the selection circuit, where the portion is associated with a subset of detectors of the FPA, and performing a readout of the FPA to obtain a respective output signal associated with each respective detector of the FPA. The method further includes determining whether the portion of the selection circuit is operating properly based at least on the output signal associated with the detectors of the subset from the readout. Related systems and devices are also provided.
    Type: Application
    Filed: October 26, 2022
    Publication date: March 2, 2023
    Inventors: Randy J. Hansen, Naseem Y. Aziz
  • Publication number: 20230031084
    Abstract: Techniques to test infrared detectors are disclosed. In one example, a focal plane array for an imaging system includes a plurality of infrared detectors arranged in a plurality of rows and columns where each of the infrared detectors is configured to provide an output signal in response to externally received thermal radiation associated with a scene. A plurality of offset circuits of the imaging system may be electrically coupled to the focal plane array and configured to selectively superimpose fixed-pattern noise on the output signals to provide modified output signals. A readout integrated circuit of the imaging system may be configured to provide the modified output signals for processing to test an integrity of the infrared detectors. Modified output signals that are outside an expected output range based on the thermal radiation and known offset may be determined defective. Related methods, devices, and systems are also provided.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 2, 2023
    Inventors: Sean Tauber, Brian B. Simolon, Naseem Y. Aziz, Nile E. Fairfield
  • Patent number: 11212466
    Abstract: Techniques are disclosed for facilitating multiple microbolometer selection for simultaneous readout. In one example, a device includes a plurality of microbolometers. The plurality of microbolometers includes a first set and a second set of serially-connected microbolometers. The device further includes a first plurality of switches configured to selectively short the plurality of microbolometers. The device further includes a second plurality of switches configured to selectively couple the plurality of microbolometers to ground. The device further includes a third plurality of switches configured to selectively provide a bias signal to the plurality of microbolometers. The device further includes a processing circuit configured to configure the first plurality, second plurality, and third plurality of switches to cause simultaneous read out of one microbolometer of the first set and one microbolometer of the second set. Related methods and systems are also provided.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 28, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Patent number: 11108967
    Abstract: Techniques are disclosed for systems and methods for facilitating infrared imaging in multiple imaging modes. A device may include an infrared image capture circuit and at least one processing circuit. The infrared image capture circuit may be configured to detect first infrared data and generate a first pixel value based on the first infrared data and a first imaging mode among multiple imaging modes. The at least one processing circuit may be configured to compare the first pixel value to a set of saturation threshold values associated with the first imaging mode. The at least one processing circuit may be further configured to select an imaging mode among the multiple imaging modes based on the comparison of the first pixel value. The at least one processing circuit may be further configured to set the infrared image capture circuit to generate a second pixel value based on the selected imaging mode.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: August 31, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Joseph Kostrzewa, Naseem Y. Aziz, John D. Schlesselmann, Brian B. Simolon, Theodore B. Hoelter
  • Patent number: 11015979
    Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation. The bolometer circuit may be configured to reduce power consumption at high temperatures. In particular, the bolometer circuit may include additional resistors provided in the resistive loads for bolometer conduction paths to limit power at high temperatures. In some embodiments, the bias (e.g., a voltage level) to the gates of transistors in the resistive loads for the bolometer conduction paths may be adjusted based on temperature to limit power and/or current at high temperatures. In bolometer circuits with a feedback resistor provided across an amplifier to configure a feedback amplifier, a circuit with adjustable amplifier power may be provided to save power. In some embodiments, a bolometer circuits may be provided with reduced gains to allow for very hot scenes to be imaged without railing the output.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 25, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Naseem Y. Aziz, Brian B. Simolon
  • Patent number: 11012647
    Abstract: A bolometer circuit includes a substrate on which a focal plane array (FPA) of active bolometers is provided. Each active bolometer is configured to receive external infrared (IR) radiation and substantially thermally isolated from the substrate. The bolometer circuit also includes one or more blind arrays of blind bolometers shielded from the external IR radiation and substantially thermally isolated from the substrate. Noises in outputs from each column and/or each row of the FPA are corrected, reduced, or suppressed based on a statistical property of outputs from a corresponding column or row of the one or more blind arrays. Noise in each frame of IR image captured by the FPA may also be corrected, reduced, or suppressed using the one or more blind arrays.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 18, 2021
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Robert F. Cannata, Brian B. Simolon, Naseem Y. Aziz
  • Publication number: 20200322548
    Abstract: Techniques are disclosed for facilitating multiple microbolometer selection for simultaneous readout. In one example, a device includes a plurality of microbolometers. The plurality of microbolometers includes a first set and a second set of serially-connected microbolometers. The device further includes a first plurality of switches configured to selectively short the plurality of microbolometers. The device further includes a second plurality of switches configured to selectively couple the plurality of microbolometers to ground. The device further includes a third plurality of switches configured to selectively provide a bias signal to the plurality of microbolometers. The device further includes a processing circuit configured to configure the first plurality, second plurality, and third plurality of switches to cause simultaneous read out of one microbolometer of the first set and one microbolometer of the second set. Related methods and systems are also provided.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Publication number: 20200025679
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20190373192
    Abstract: A bolometer circuit includes a substrate on which a focal plane array (FPA) of active bolometers is provided. Each active bolometer is configured to receive external infrared (IR) radiation and substantially thermally isolated from the substrate. The bolometer circuit also includes one or more blind arrays of blind bolometers shielded from the external IR radiation and substantially thermally isolated from the substrate. Noises in outputs from each column and/or each row of the FPA are corrected, reduced, or suppressed based on a statistical property of outputs from a corresponding column or row of the one or more blind arrays. Noise in each frame of IR image captured by the FPA may also be corrected, reduced, or suppressed using the one or more blind arrays.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Robert F. Cannata, Brian B. Simolon, Naseem Y. Aziz
  • Publication number: 20190368941
    Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation. The bolometer circuit may be configured to reduce power consumption at high temperatures. In particular, the bolometer circuit may include additional resistors provided in the resistive loads for bolometer conduction paths to limit power at high temperatures. In some embodiments, the bias (e.g., a voltage level) to the gates of transistors in the resistive loads for the bolometer conduction paths may be adjusted based on temperature to limit power and/or current at high temperatures. In bolometer circuits with a feedback resistor provided across an amplifier to configure a feedback amplifier, a circuit with adjustable amplifier power may be provided to save power. In some embodiments, a bolometer circuits may be provided with reduced gains to allow for very hot scenes to be imaged without railing the output.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Naseem Y. Aziz, Brian B. Simolon
  • Publication number: 20190342480
    Abstract: Techniques are disclosed for systems and methods for facilitating infrared imaging in multiple imaging modes. A device may include an infrared image capture circuit and at least one processing circuit. The infrared image capture circuit may be configured to detect first infrared data and generate a first pixel value based on the first infrared data and a first imaging mode among multiple imaging modes. The at least one processing circuit may be configured to compare the first pixel value to a set of saturation threshold values associated with the first imaging mode. The at least one processing circuit may be further configured to select an imaging mode among the multiple imaging modes based on the comparison of the first pixel value. The at least one processing circuit may be further configured to set the infrared image capture circuit to generate a second pixel value based on the selected imaging mode.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Joseph Kostrzewa, Naseem Y. Aziz, John D. Schlesselmann, Brian B. Simolon, Theodore B. Hoelter
  • Patent number: 10197448
    Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation and a resistive load, which are configured to be connected in series in a bolometer conduction path from a supply voltage node to a common voltage node. A node in the bolometer conduction path between the resistive load and the active bolometer is coupled to a first input of an op-amp. A variable voltage source is coupled to a second input of the op-amp to provide a reference voltage level. The op-amp maintains the reference voltage level at the first input to generate a current flow in response to a resistance change of the active bolometer due to the external IR radiation. The amplifier circuit may be configured as a feedback amplifier or an integrating amplifier. The bolometer circuit may be configured to enable a low-power mode of operation.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 5, 2019
    Assignee: FLIR Systems, Inc.
    Inventors: Brian B. Simolon, Naseem Y. Aziz, Mark T. Nussmeier, Robert F. Cannata
  • Patent number: 9958332
    Abstract: Various techniques are disclosed for bolometer circuits and related methods for thermal imaging in a difference domain, where each pixel value represents a difference in incident IR radiation intensity between adjacent bolometers. For example, a bolometer circuit may include an array of bolometers each configured to generate a pixel signal in response to a bias and incident infrared radiation. Each column of the bolometer array may comprise an amplifier, a first plurality of switches each configured to selectively provide a supply voltage to a respective one of bolometers of the each column, a second plurality of switches each configured to selectively route a difference of the pixel signals of a respective adjacent pair of the bolometers of the each column to an input of the amplifier, and a third plurality of switches configured to selectively provide a common voltage to a respective one of the bolometers of the each column.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: May 1, 2018
    Assignee: FLIR Systems, Inc.
    Inventors: Brian B. Simolon, Naseem Y. Aziz, Nicholas Högasten
  • Patent number: 9948878
    Abstract: Various techniques are provided to detect abnormal clock rates in devices such as imaging sensor devices (e.g., infrared and/or visible light imaging devices). In one example, a device may include a clock rate detection circuit that may be readily integrated as part of the device to provide effective detection of an abnormal clock rate. The device may include a ramp generator, a counter, and/or other components which may already be implemented as part of the device. The ramp generator may generate a ramp signal independent of a clock signal provided to the device, while the counter may increment or decrement a count value in response to the clock signal. The device may include a comparator adapted to select a current count value of the counter when the ramp signal reaches a reference signal. A processor of the device may be adapted to determine whether the clock signal is operating in an acceptable frequency range, based on the selected count value.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: April 17, 2018
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Brian Simolon, Eric A. Kurth, Jim Goodland, Mark Nussmeier, Nicholas Hogasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Naseem Y. Aziz
  • Publication number: 20170219436
    Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation and a resistive load, which are configured to be connected in series in a bolometer conduction path from a supply voltage node to a common voltage node. A node in the bolometer conduction path between the resistive load and the active bolometer is coupled to a first input of an op-amp. A variable voltage source is coupled to a second input of the op-amp to provide a reference voltage level. The op-amp maintains the reference voltage level at the first input to generate a current flow in response to a resistance change of the active bolometer due to the external IR radiation. The amplifier circuit may be configured as a feedback amplifier or an integrating amplifier. The bolometer circuit may be configured to enable a low-power mode of operation.
    Type: Application
    Filed: April 11, 2017
    Publication date: August 3, 2017
    Inventors: BRIAN B. SIMOLON, NASEEM Y. AZIZ, MARK T. NUSSMEIER, ROBERT F. CANNATA
  • Publication number: 20170211984
    Abstract: Various techniques are disclosed for bolometer circuits and related methods for thermal imaging in a difference domain, where each pixel value represents a difference in incident IR radiation intensity between adjacent bolometers. For example, a bolometer circuit may include an array of bolometers each configured to generate a pixel signal in response to a bias and incident infrared radiation. Each column of the bolometer array may comprise an amplifier, a first plurality of switches each configured to selectively provide a supply voltage to a respective one of bolometers of the each column, a second plurality of switches each configured to selectively route a difference of the pixel signals of a respective adjacent pair of the bolometers of the each column to an input of the amplifier, and a third plurality of switches configured to selectively provide a common voltage to a respective one of the bolometers of the each column.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Brian B. Simolon, Naseem Y. Aziz, Nicholas Högasten
  • Publication number: 20160224055
    Abstract: Various techniques are provided to detect abnormal clock rates in devices such as imaging sensor devices (e.g., infrared and/or visible light imaging devices). In one example, a device may include a clock rate detection circuit that may be readily integrated as part of the device to provide effective detection of an abnormal clock rate. The device may include a ramp generator, a counter, and/or other components which may already be implemented as part of the device. The ramp generator may generate a ramp signal independent of a clock signal provided to the device, while the counter may increment or decrement a count value in response to the clock signal. The device may include a comparator adapted to select a current count value of the counter when the ramp signal reaches a reference signal. A processor of the device may be adapted to determine whether the clock signal is operating in an acceptable frequency range, based on the selected count value.
    Type: Application
    Filed: December 7, 2015
    Publication date: August 4, 2016
    Inventors: Brian Simolon, Eric A. Kurth, Jim Goodland, Mark Nussmeier, Nicholas Hogasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Naseem Y. Aziz