Patents by Inventor Nathan Craig

Nathan Craig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102320
    Abstract: A wing lock and deployment apparatus for an air launched vehicle includes a driver acted on by a single linear actuation event. The disclosed wing lock and deployment apparatus is capable of unlocking deployable wings of an air launched vehicle, deploying deployable wings of the air launched vehicle from a stored position, and locking deployable wings of the air launched vehicle in a deployed position in sequential order with the one single linear actuation event.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Inventors: Keith Ryan Hollen, Nathan Matthew Knibb, Perry T. Horst, Jonathan David Gettinger, Alexander McGregor, Everett Ryan Eaton, Michael L. Oleshchuk, Sean Craig Sundberg, Angel Rodriguez
  • Patent number: 11894566
    Abstract: A fuel cell stack includes a first end region, a second end region, and a middle region. At least one of a first number of fuel cell units in the first end region is a first fuel cell unit including a membrane electrode assembly (MEA) with a first catalyst material on either or both an anode and a cathode of the first fuel cell unit. At least one of a second number of fuel cell units in the second end region is a second fuel cell unit including an MEA with a second catalyst material on either or both an anode and a cathode of the first fuel cell unit. The middle region is situated between the first and the second end region. At least one of a third number of fuel cell units in the middle region is a third fuel cell unit including an MEA with a third catalyst material on either or both an anode and a cathode of the first fuel cell unit. At least one of the first, the second, and the third catalyst material are different.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: February 6, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Ulrich Berner, Nathan Craig, Charles Tuffile
  • Patent number: 11884561
    Abstract: A device for removing chloride-containing salts from water includes a container configured to contain saline water, a first electrode arranged in fluid communication with the saline water, and a power source. The first electrode includes a conversion material that is substantially insoluble in the saline water and has a composition that includes at least two or more of aluminum, chlorine, copper, iron, oxygen, and potassium. The composition varies over a range with respect to a quantity of chloride ions per formula unit. The power source supplies current to the first electrode in a first operating state so as to induce a reversible conversion reaction in which the conversion material bonds to the chloride ions in the saline water to generate a treated water solution. The conversion material dissociates the chloride ions therefrom into the saline water solution in a second operating state to generate a wastewater solution.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 30, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Patent number: 11884560
    Abstract: A water softening device includes a container configured to contain water, first and second electrodes arranged in fluid communication with the water, and a power source. The first electrode includes a conversion material that has a first composition and a second composition coexisting with the first composition. The first composition includes calcium ions bonded thereto and the second composition includes sodium ions bonded thereto. The power source supplies current in a first operating state such that the second composition exchanges sodium ions for calcium ions in the water to generate a soft water solution. The first and second electrodes are connected in a second operating state such that the first composition exchanges calcium ions for sodium ions in the water to generate a wastewater solution. The conversion material undergoes a reversible conversion reaction to convert between the first and second compositions within the water stability window.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: January 30, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Publication number: 20230411631
    Abstract: An electrochemical cell (e.g., a fuel cell) including an anode catalyst layer, a cathode catalyst layer, and an electrolyte membrane layer extending between the anode catalyst layer the cathode catalyst layer, and a graphene-based layer. The graphene-based layer is disposed between the cathode catalyst layer and the electrolyte membrane layer and/or the anode catalyst layer and the electrolyte membrane layer. The graphene-based layer is configured to suppress crossover gases and metallic cation exchange to enhance performance and durability of the electrochemical cell.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Inventors: Jonathan BRAATEN, Lei CHENG, Shirin MEHRAZI, Morteza REZAEI TALARPOSHTI, Daniil KITCHAEV, Nathan CRAIG, Christina JOHNSTON
  • Publication number: 20230411638
    Abstract: An electrochemical cell (e.g., a fuel cell) includes an anode layer, a cathode layer, and an electrolyte membrane layer disposed between and spacing part the anode layer and the cathode layer. The electrochemical cell further includes a functional layer disposed at an interface between the cathode layer and the electrode membrane layer. The functional layer includes a composition including a carbon material, an ionomer material, and optionally an amount of catalyst material.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Inventors: Lei CHENG, Morteza REZAEI TALARPOSHTI, Jonathan BRAATEN, Daniil KITCHAEV, Nathan CRAIG, Christina JOHNSTON
  • Publication number: 20230402631
    Abstract: An electrochemical cell catalyst state of health monitoring device. The device includes a first magnetic device adjacent a first side of a first catalyst material associated with a first electrode. The device further includes a second magnetic device adjacent a second side of the first catalyst material. The first or second magnetic device is configured to generate a magnetic field. The other of the first and second magnetic devices is configured to receive a magnetic response from the first catalyst material. The device also includes a controller configured to receive the magnetic response and to determine magnetic response data of the first catalyst material in response to the magnetic response. The magnetic response data is indicative of a state of health.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 14, 2023
    Inventors: Daniil A. KITCHAEV, Mordechai KORNBLUTH, Lei CHENG, Kuppan SARAVANAN, Jonathan BRAATEN, Nathan CRAIG, Charles TUFFILE
  • Patent number: 11834354
    Abstract: A desalination battery includes a first electrode, a second electrode, an intercalation compound contained in the first electrode, a container configured to contain a saline water solution, and a power source. The intercalation compound includes at least one of a metal oxide, a metalloid oxide, a metal oxychloride, a metalloid oxychloride, and a hydrate thereof with each having a ternary or higher order. The first and second electrodes are configured to be arranged in fluid communication with the saline water solution. The power source is configured to supply electric current to the first and second electrodes in different operating states to induce a reversible intercalation reaction within the intercalation compound. The intercalation compound reversibly stores and releases target anions from the saline water solution to generate a fresh water solution in one operating state and a wastewater solution in another operating state.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: December 5, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Mordechai Kornbluth, Jonathan Mailoa, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Publication number: 20230387421
    Abstract: A catalyst support material for an electrochemical system. The catalyst support material includes a metal material of SnWO4 reactive with H3O+, HF and/or SO3? to form reaction products in which the metal material of SnWO4 accounts for a stable molar percentage of the reaction products.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 30, 2023
    Inventors: Soo KIM, Jonathan MAILOA, Mordechai KORNBLUTH, Lei CHENG, Georgy SAMSONIDZE, Boris KOZINSKY, Nathan CRAIG
  • Publication number: 20230385722
    Abstract: Systems and techniques for goal optimized process scheduler are described herein. A set of processes may be obtained from a plurality of process engines. Process data may be identified for each member of the set of processes. Goal data may be obtained for a goal. The goal data may indicate elements for attainment of the goal by completion of one or more processes of the set of processes. A process schedule may be generated for the set of processes based on the goal data. The process schedule may be optimized through removal of processes from the process schedule by comparison of the process data to the goal data. The optimized process schedule may include a linear organization of processes for attainment of the goal. An optimized process schedule workflow may be created for display on a user interface of a computing device.
    Type: Application
    Filed: November 5, 2020
    Publication date: November 30, 2023
    Inventors: Nathan Craig Bricklin, Gregory John Hansen, Adnan Khan, Kathleen E. McGinn, Ryan Benjamin Miller, Wairnola Marria Rhodriquez
  • Patent number: 11820681
    Abstract: A desalination device includes a container, first and second electrodes, an anion exchange membrane (AEM), and a power source. The container contains saline water that has an elevated concentration of dissolved salts. The AEM separates the container into first and second compartments into which the first and second electrodes, respectively, are arranged. The AEM has a continuous porous structure and a plurality of negatively-charged oxygen functional groups coupled to the porous structure. The power source is configured to selectively apply a voltage to one of the first and second electrodes. The AEM has a selective permeability when the voltage is applied such that cations in the saline water solution have a first diffusion rate d1 therethrough and anions in the saline water solution have a second diffusion rate d2 therethrough. The first diffusion rate d1 is less than the second diffusion rate d2 and greater than or equal to zero.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 21, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Patent number: 11817184
    Abstract: A computational method simulating the motion of elements within a multi-element system using a graph neural network (GNN). The method includes converting a molecular dynamics snapshot of the elements into a directed graph comprised of nodes and edges. The method further includes the step of initially embedding the nodes and the edges to obtain initially embedded nodes and edges. The method also includes updating the initially embedded nodes and edges by passing a first message from a first edge to a first node using a first message function and passing a second message from the first node to the first edge using a second message function to obtain updated embedded nodes and edges, and predicting a force vector for one or more elements based on the updated embedded edges and a unit vector pointing from the first node to a second node or the second node to the first node.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 14, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Cheol Woo Park, Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Soo Kim, Karim Gadelrab, Boris Kozinsky, Nathan Craig
  • Patent number: 11757104
    Abstract: A catalyst support material for a proton exchange membrane fuel cell (PEMFC). The catalyst support material includes a metal material of an at least partially oxidized form of TiNb3O6 reactive with H3O+, HF and/or SO3? to form reaction products in which the metal material of the at least partially oxidized form of TiNb3O6 accounts for a stable molar percentage of the reaction products.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: September 12, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Lei Cheng, Georgy Samsonidze, Boris Kozinsky, Nathan Craig
  • Patent number: 11735769
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: August 22, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Saravanan Kuppan, Katherine Harry, Michael Metzger, Nathan Craig, Jake Christensen
  • Patent number: 11670790
    Abstract: A fuel cell membrane electrode assembly including a polymer electrolyte membrane (PEM) and first and second electrodes. The PEM is situated between the first and second electrodes. The first electrode includes a first catalyst material layer including a first catalyst material and having first and second surfaces. The first electrode includes first and second material layers adjacent to the first and second surfaces, respectively, of the first catalyst material. The first material layer faces away from the PEM and the second material layer faces the PEM. The first material layer comprises a graphene-based material layer having a number of defects configured to mitigate dissolution of the first catalyst material through the first material layer.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 6, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Timothy Schultz, Nathan Craig, Uma Krishnamoorthy, Jake Christensen
  • Publication number: 20230112040
    Abstract: A computational method for determining a location and an amount of a transition metal M in surface facets of a Pt—M alloy using a density functional theory includes receiving a particle size and a surface facet distribution of the Pt—M alloy and a total concentration of M in the Pt—M alloy; calculating a total number of M atoms in the Pt—M alloy based on the particle size and the surface facet distribution of the Pt—M alloy and the total concentration of M in the Pt—M alloy; and predicting a mixing energy between Pt and at least one of the total number of M atoms in a subsurface layer of each of the surface facets of the Pt—M alloy when Pt is mixed with the at least one of the total number of M atoms.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Inventors: Soo KIM, Karim GADELRAB, Jonathan MAILOA, Matthias HANAUER, Ulrich BERNER, Nathan CRAIG, Christina JOHNSTON, Charles TUFFILE
  • Publication number: 20230088316
    Abstract: Fuel cell alloy bipolar plates. The alloys may be used as a coating or bulk material. The alloys and metallic glasses may be particularly suitable for proton-exchange membrane fuel cells because of they may exhibit reduced weights and/or better corrosion resistance. The alloys may include any of the following AlxCuyTiz, AlxFeyNiz, AlxMnyNiz, AlxNiyTiz, CuxFeyTiz, CuxNiyTiz, AlxFeySiz, AlxMnySiz, AlxNiySiz, NixSiyTiz, and CxFeySiz. The alloys or metallic glass may be doped with various dopants to improve glass forming ability, mechanical strength, ductility, electrical or thermal conductivities, hydrophobicity, and/or corrosion resistance.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventors: Soo Kim, Jonathan Mailoa, Lei Cheng, Nathan Craig
  • Publication number: 20230047164
    Abstract: An electrostatic charging air cleaning device. The device includes a pre-charger configured to generate a corona discharge to electrostatically charge particulate matter in an air stream. The device further includes a separator downstream from the pre-charger configured to convey the electrostatically charged particulate matter and formed of an insulative material. The device also includes a collection electrode configured to receive and to absorb the conveyed electrostatically charged particulate matter. The collection electrode includes a substrate material and a coating layer coated onto the substrate material. The coating layer includes a carbon black material and a polymeric binder. The substrate material is a metal plate including mechanical perforations.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Michael METZGER, Saravanan KUPPAN, Sondra HELLSTROM, Nathan CRAIG, Christina JOHNSTON, Jake CHRISTENSEN
  • Publication number: 20220416264
    Abstract: A method of monitoring and replacing fuel cells within a fuel cell stack assembly. The method includes measuring one or more operating conditions of a fuel cell within the fuel cell stack assembly. The method includes determining, using a processor, a state of health of the fuel cell based at least in part on the one or more operating conditions. The method includes detaching the fuel cell from an adjacent cell within the fuel cell stack assembly by removing a first electrically-conducing mating matrix associated with a first endplate of the fuel cell from a second electrically-conducing mating matrix associated with a second endplate of the adjacent cell. The method includes attaching a replacement fuel cell by mating a third electrically-conducing mating matrix associated with a third endplate of the replacement fuel cell with a fourth electrically-conducing mating matrix associated with a fourth endplate of the adjacent cell.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Inventors: Soo KIM, Nathan CRAIG, Nikhil RAVI, Jake CHRISTENSEN
  • Patent number: 11532827
    Abstract: Fuel cell alloy bipolar plates. The alloys may be used as a coating or bulk material. The alloys and metallic glasses may be particularly suitable for proton-exchange membrane fuel cells because of they may exhibit reduced weights and/or better corrosion resistance. The alloys may include any of the following AlxCuyTiz, AlxFeyNiz, AlxMnyNiz, AlxNiyTiz, CuxFeyTiz, CuxNiyTiz, AlxFeySiz, AlxMnySiz, AlxNiySiz, NixSiyTiz, and CxFeySiz. The alloys or metallic glass may be doped with various dopants to improve glass forming ability, mechanical strength, ductility, electrical or thermal conductivities, hydrophobicity, and/or corrosion resistance.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: December 20, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Lei Cheng, Nathan Craig