Patents by Inventor Nathan Gardner

Nathan Gardner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070069225
    Abstract: A semiconductor structure includes an n-type region, a p-type region, and a III-nitride light emitting layer disposed between the n-type region and the p-type region. The III-nitride light emitting layer has a lattice constant greater than 3.19 ?. Such a semiconductor structure may be grown on a substrate including a host and a seed layer bonded to the host. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 29, 2007
    Inventors: Michael Krames, Nathan Gardner, John Epler
  • Publication number: 20070072324
    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 29, 2007
    Inventors: Michael Krames, Nathan Gardner, John Epler
  • Publication number: 20070045638
    Abstract: A III-nitride light emitting layer is disposed between an n-type region and a p-type region. The light emitting layer is a doped thick layer. In some embodiments, the light emitting layer is sandwiched between two doped spacer layers.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 1, 2007
    Inventors: Yu-Chen Shen, Nathan Gardner, Satoshi Watanabe, Michael Krames, Gerd Mueller
  • Publication number: 20060284187
    Abstract: A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
    Type: Application
    Filed: June 17, 2005
    Publication date: December 21, 2006
    Inventors: Jonathan Wierer, Michael Krames, Nathan Gardner
  • Publication number: 20060220031
    Abstract: To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.
    Type: Application
    Filed: April 5, 2005
    Publication date: October 5, 2006
    Inventors: Michael Krames, Nathan Gardner, Frank Steranka
  • Publication number: 20060197100
    Abstract: A semiconductor light emitting device includes a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer may be a wurtzite III-nitride layer with a thickness of at least 50 angstroms. The light emitting layer may have a polarization reversed from a conventional wurtzite III-nitride layer, such that across an interface between the light emitting layer and the p-type region, the wurtzite c-axis points toward the light emitting layer. Such an orientation of the c-axis may create a negative sheet charge at an interface within or at the edge of the p-type region, providing a barrier to charge carriers in the light emitting layer.
    Type: Application
    Filed: September 13, 2005
    Publication date: September 7, 2006
    Inventors: Yu-Chen Shen, Michael Krames, Nathan Gardner
  • Publication number: 20060091404
    Abstract: A III-nitride light emitting layer in a semiconductor light emitting device has a graded composition. The composition of the light emitting layer may be graded such that the change in the composition of a first element is at least 0.2% per angstrom of light emitting layer. Grading in the light emitting layer may reduce problems associated with polarization fields in the light emitting layer. The light emitting layer may be, for example InxGa1-xN, AlxGa1-xN, or InxAlyGa1-x-yN.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventors: Yu-Chen Shen, Michael Krames, Nathan Gardner
  • Publication number: 20050263780
    Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
    Type: Application
    Filed: July 7, 2005
    Publication date: December 1, 2005
    Inventors: David Bour, Nathan Gardner, Werner Goetz, Stephen Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher Kocot, Mark Hueschen
  • Publication number: 20050205884
    Abstract: A semiconductor light emitting device includes an in-plane active region that emits linearly-polarized light. An in-plane active region may include, for example, a {11{overscore (2)}0} or {10{overscore (1)}0} InGaN light emitting layer. In some embodiments, a polarizer oriented to pass light of a polarization of a majority of light emitted by the active region serves as a contact. In some embodiments, two active regions emitting the same or different colored light are separated by a polarizer oriented to pass light of a polarization of a majority of light emitted by the bottom active region, and to reflect light of a polarization of a majority of light emitted by the top active region. In some embodiments, a polarizer reflects light scattered by a wavelength converting layer.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 22, 2005
    Inventors: Jarnes Kim, John Epler, Nathan Gardner, Michael Krames, Jonathan Wierer
  • Publication number: 20050167690
    Abstract: A light-emitting semiconductor device comprises a III-Nitride active region and a III-Nitride layer formed proximate to the active region and having a thickness that exceeds a critical thickness for relaxation of strain in the III-Nitride layer. The III-Nitride layer may be a carrier confinement layer, for example. In another aspect of the invention, a light-emitting semiconductor device comprises a III-Nitride light emitting layer, an InxAlyGa1-x-yN (0?x?1, 0?y?1, x+y?1), and a spacer layer interposing the light emitting layer and the InxAlyGa1-x-yN layer. The spacer layer may advantageously space the InxAlyGa1-x-yN layer and any contaminants therein apart from the light emitting layer. The composition of the III-Nitride layer may be advantageously selected to determine a strength of an electric field in the III-Nitride layer and thereby increase the efficiency with which the device emits light.
    Type: Application
    Filed: January 30, 2004
    Publication date: August 4, 2005
    Inventors: Nathan Gardner, Christopher Kocot, Stephen Stockman
  • Publication number: 20050023549
    Abstract: A III-nitride device includes a first n-type layer, a first p-type layer, and an active region separating the first p-type layer and the first n-type layer. The device may include a second n-type layer and a tunnel junction separating the first and second n-type layers. First and second contacts are electrically connected to the first and second n-type layers. The first and second contacts are formed from the same material, a material with a reflectivity to light emitted by the active region greater than 75%. The device may include a textured layer disposed between the second n-type layer and the second contact or formed on a surface of a growth substrate opposite the device layers.
    Type: Application
    Filed: August 1, 2003
    Publication date: February 3, 2005
    Inventors: Nathan Gardner, Jonathan Wierer, Gerd Mueller, Michael Krames