Patents by Inventor Nathan P. Marchack

Nathan P. Marchack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200266342
    Abstract: A semiconductor device and a method for fabricating the same. The semiconductor device includes a substrate and at least one trench line formed within the substrate. The semiconductor device further includes a self-aligned landing pad in contact with the at least one trench line, and a magnetic tunnel junction stack formed on and in contact with the self-aligned landing pad. The method includes forming a conductive layer on and in contact with at least one trench line formed within a substrate. Magnetic tunnel junction stack layers are deposited on and in contact with the conductive layer. The magnetic tunnel junction stack layers are etched to form a magnetic tunnel junction stack, where the etching stops on the conductive layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Applicant: International Business Machines Corporation
    Inventors: Anthony J. ANNUNZIATA, Chandrasekara KOTHANDARAMAN, Nathan P. MARCHACK, Eugene J. O'SULLIVAN
  • Publication number: 20200251652
    Abstract: A method of forming a magnetic tunnel junction (MTJ) containing device is provided in which a patterned sacrificial material is present atop a MTJ pillar that is located on a bottom electrode. A passivation material liner and a dielectric material portion laterally surround the MTJ pillar and the patterned sacrificial material. The patterned sacrificial material is removed from above the MTJ pillar and replaced with a top electrode. A seam is present in the top electrode. The method mitigates the possibility of depositing resputtered conductive metal particles on a sidewall of the MTJ pillar. Thus, improved device performance, in terms of a reduction in failure mode, can be obtained.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 6, 2020
    Inventors: Pouya Hashemi, Alexander Reznicek, Nathan P. Marchack, Bruce B. Doris
  • Publication number: 20200243758
    Abstract: A bottom electrode structure for a magnetic tunnel junction (MTJ) containing device is provided. The bottom electrode structure includes a mesa portion that is laterally surrounded by a recessed region. The recessed region of the bottom electrode structure is laterally adjacent to a dielectric material, and a MTJ pillar is located on the mesa portion of the bottom electrode structure. Such a configuration shields the recessed region from impinging ions thus preventing deposition of resputtered conductive metal particles from the bottom electrode onto the MTJ pillar.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Publication number: 20200243756
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a conformal dielectric encapsulation liner is located on a sidewall of each of a MTJ pillar and an overlying top electrode, and a non-conformal dielectric encapsulation liner is located on the conformal dielectric encapsulation liner. This dual encapsulation liner structure prevents the bottom electrode of the MTJ containing device from being physically exposed thus eliminating the possibility that the bottom electrode can be a source of resputtered conductive metal particles that can deposit on a sidewall of the MTJ pillar. As such, electrical shorting is reduced in the MTJ containing device of the present application. Also, the dual encapsulation liner structure can mitigate chemical diffusion into the tunnel barrier material of the MTJ pillar.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Publication number: 20200243750
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a bottom electrode having a small CD is formed and is located laterally adjacent to diamond like carbon (DLC). DLC replaces a material stack of, from bottom to top, a silicon nitride layer and an organic planarization layer (OPL) which is typically used in providing a conductive structure having a reduced CD. DLC provides a higher etch resistance to IBE than silicon nitride, but DLC can be patterned using conventional etchants. The use of DLC thus reduces the number of processing steps for providing a reduced CD bottom electrode, and also provides a more robust solution to the issue of punch through to an underlying conductive material layer.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 30, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Chandrasekharan Kothandaraman
  • Patent number: 10727398
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a bottom electrode having a small CD is formed and is located laterally adjacent to diamond like carbon (DLC). DLC replaces a material stack of, from bottom to top, a silicon nitride layer and an organic planarization layer (OPL) which is typically used in providing a conductive structure having a reduced CD. DLC provides a higher etch resistance to IBE than silicon nitride, but DLC can be patterned using conventional etchants. The use of DLC thus reduces the number of processing steps for providing a reduced CD bottom electrode, and also provides a more robust solution to the issue of punch through to an underlying conductive material layer.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Bruce B. Doris, Chandrasekharan Kothandaraman
  • Publication number: 20200235286
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided that includes an undercut conductive pedestal structure having a concave sidewall positioned between a bottom electrode and a MTJ pillar. The geometric nature of such a conductive pedestal structure makes the pedestal structure unlikely to be resputtered and deposited on a sidewall of the MTJ pillar, especially the sidewall of the tunnel barrier of the MTJ pillar. Thus, electrical shorts caused by depositing resputtered conductive metal particles on the sidewall of the tunnel barrier of the MTJ pillar are substantially reduced.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris
  • Publication number: 20200220073
    Abstract: A semiconductor structure and fabrication method of forming a semiconductor structure. In the method there is provided an electrically conductive structure embedded in an interconnect dielectric material layer of a magnetoresistive random access memory device. A conductive landing pad is located on a surface of the electrically conductive structure. A multilayered magnetic tunnel junction (MTJ) structure and an MTJ cap layer is formed on the landing pad. Then there is formed a metal hardmask layer on a surface of said MTJ cap layer, the etch stop layer being subject to lithographic patterning and etching to form a patterned hardmask pillar structure. An encapsulating is performed to encapsulate, using an insulating material film, a top surface and sidewall surfaces of said patterned hardmask layer. Subsequent etch processing forms an MTJ stack having sidewalls aligned to the patterned hardmask without impacting MTJ stack performance.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris
  • Publication number: 20200220068
    Abstract: An ultra-small diameter and a tall bottom electrode for use in magnetic random access memory (MRAM) devices containing a multilayered MTJ pillar is provided. The bottom electrode is formed by depositing a thick bottom electrode layer on a surface of a metallic etch stop layer. The bottom electrode layer is then patterned by lithography and etching to provide a bottom electrode structure. An angled ion beam etch is thereafter used to trim the bottom electrode structure into a bottom electrode having a high aspect ratio (on the order of 10:1 or greater).
    Type: Application
    Filed: January 4, 2019
    Publication date: July 9, 2020
    Inventors: Pouya Hashemi, Bruce B. Doris, John A. Ott, Nathan P. Marchack
  • Publication number: 20200220072
    Abstract: A semiconductor structure and fabrication method of forming a semiconductor structure. The method first provides an electrically conductive structure embedded in an interconnect dielectric material layer of a magnetoresistive random access memory device. A conductive landing pad is located on a surface of the electrically conductive structure. A multilayered magnetic tunnel junction (MTJ) structure and an MTJ cap layer is formed on the landing pad. Then there is formed a first conductive layer on top the MTJ cap layer and a second conductive metal layer formed on top the first conductive layer. A pillar mask structure is then patterned and formed on the second conductive layer. The resulting structure is subject to lithographic patterning and etching to form a patterned bilayer metal hardmask pillar structure on top the MTJ cap layer. Subsequent etch processing forms an MTJ stack having sidewalls aligned to the patterned bilayer metal hardmask pillar.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Patent number: 10686124
    Abstract: Back end of line (BEOL) metallization structures and methods generally includes forming a landing pad on an interconnect structure. A multilayer structure including layers of metals and at least one insulating layer are provided on the structure and completely cover the landing pad. The landing pad is a metal-filled via and has a width dimension that is smaller than the multilayer structure, or the multilayer structure and the underlying metal conductor in the interconnect structure. The landing pad metal-filled via can have a width dimension that is sub-lithographic.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Bruce B. Doris, Henry K. Utomo, Theodorus E. Standaert, Nathan P. Marchack
  • Patent number: 10684246
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measurable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measurable electrical parameter to computer elements.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Patent number: 10669153
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10644232
    Abstract: A semiconductor device and a method for fabricating the same. The semiconductor device includes a substrate and at least one trench line formed within the substrate. The semiconductor device further includes a self-aligned landing pad in contact with the at least one trench line, and a magnetic tunnel junction stack formed on and in contact with the self-aligned landing pad. The method includes forming a conductive layer on and in contact with at least one trench line formed within a substrate. Magnetic tunnel junction stack layers are deposited on and in contact with the conductive layer. The magnetic tunnel junction stack layers are etched to form a magnetic tunnel junction stack, where the etching stops on the conductive layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: May 5, 2020
    Assignee: International Business Machines Corporation
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Nathan P. Marchack, Eugene J. O'Sullivan
  • Patent number: 10644233
    Abstract: A method is presented for establishing a top contact to a magnetic tunnel junction (MTJ) device, the method including selectively etching, via a first etching process, an oxide layer to expose a top surface of a nitride layer of a dummy fill shape and selectively etching, via a second etching process, a top portion of the nitride layer of the dummy fill shape to expose a top surface thereof. The method further includes selectively etching, via the second etching process, the oxide layer to expose a top surface of a nitride layer of the MTJ device, and selectively etching, via the first etching process, a top portion of the nitride layer of the MTJ device to expose a top surface thereof such that a height of the MTJ device is approximately equal to a height of the dummy fill shape.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: May 5, 2020
    Assignee: International Business Machines Corporation
    Inventors: Michael F. Lofaro, Nathan P. Marchack, Janusz J. Nowak, Eugene J. O'Sullivan
  • Patent number: 10618806
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10622553
    Abstract: Methods for forming magnetic tunnel junctions and structures thereof include cryogenic etching the layers defining the magnetic tunnel junction without lateral diffusion of reactive species.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Nathan P. Marchack, Hiroyuki Miyazoe
  • Publication number: 20200108244
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 9, 2020
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200094300
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200091418
    Abstract: Techniques for MRAM patterning using a diamond-like carbon hardmask are provided. In one aspect, a method of forming an MRAM device includes: forming an MRAM stack on a substrate; depositing a metal hardmask layer on the MRAM stack; depositing a diamond-like carbon layer on the metal hardmask layer; forming a patterned resist on the diamond-like carbon layer; patterning the diamond-like carbon layer using the patterned resist to form a diamond-like carbon pillar; patterning the metal hardmask layer using the diamond-like carbon pillar to form a patterned metal hardmask; and patterning the MRAM stack into an MRAM pillar using the patterned metal hardmask to form the MRAM device. An MRAM device is also provided.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Inventors: Anthony Annunziata, Nathan P. Marchack, Eugene O'Sullivan, Chandrasekharan Kothandaraman