Patents by Inventor Nathan R. Brown

Nathan R. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220023794
    Abstract: A carbon dioxide capture system, fluid contactor and method are disclosed. In embodiments, a gas-liquid contactor unit is disposed along a process fluid flow axis and includes a contactor of network flow diversions barriers with flow voids for movement of process fluids therebetween. A plurality of heat exchange channels are provided in the flow diversion barriers to transport a heat exchange fluid through the contactor network. A heat exchange feed channel is provided to deliver feed of the heat exchange fluid to the heat exchange channels at multiple feed locations spaced along the flow axis. At least one heat exchange bypass channel may extend beyond the multiple feed locations to deliver a portion of the feed of the heat exchange fluid to additional heat exchange channels located downstream from the multiple feed locations for the heat exchange channels.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Applicant: ION Clean Energy, Inc.
    Inventors: Charles Panaccione, Erik Everhardus Bernardus Meuleman, Gregory Allan Staab, Nathan R. Brown
  • Patent number: 11167236
    Abstract: A carbon dioxide capture system, fluid contactor and method are disclosed. In embodiments, a gas-liquid contactor unit is disposed along a process fluid flow axis and includes a contactor network of flow diversion barriers with flow voids for movement of process fluids therebetween. A plurality of heat exchange channels are provided in the flow diversion barriers to transport a heat exchange fluid through the contactor network. A heat exchange feed channel is provided to deliver feed of the heat exchange fluid to the heat exchange channels at multiple feed locations spaced along the flow axis. At least one heat exchange bypass channel may extend beyond the multiple feed locations to deliver a portion of the feed of the heat exchange fluid to additional heat exchange channels located downstream from the multiple feed locations for the heat exchange channels.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 9, 2021
    Assignee: ION Clean Energy, Inc.
    Inventors: Charles Panaccione, Erik Everhardus Bernardus Meuleman, Gregory Allan Staab, Nathan R. Brown
  • Publication number: 20210308616
    Abstract: A chemical processing system for removing carbon dioxide from a gas mixture using a multicomponent amine-based scrubbing solution includes a spectroscopic evaluation system with a liquid contact probe for spectroscopic investigation, an energy source connected with the liquid contact probe to provide the spectroscopic stimulation energy to the probe, a spectrometer connected with the liquid contact probe to detect the spectroscopic response energy to the probe and to output spectral data corresponding to the spectroscopic response energy, and a machine learning spectral data analyzer connected to the spectrometer for evaluation of the spectral data to determine a concentration value for each of water, amine component and captured carbon dioxide in the scrubbing solution, the machine learning spectral data analyzer being trained for each such component over a corresponding trained concentration range, and optionally over a trained temperature range to provide a temperature-compensated concentration value.
    Type: Application
    Filed: May 7, 2021
    Publication date: October 7, 2021
    Inventors: Charles Panaccione, Nathan R. Brown, Erik Everhardus Bernardus Meuleman
  • Patent number: 11014041
    Abstract: A chemical processing system for removing carbon dioxide from a gas mixture using a multicomponent amine-based scrubbing solution includes a spectroscopic evaluation system with a liquid contact probe for spectroscopic investigation, an energy source connected with the liquid contact probe to provide the spectroscopic stimulation energy to the probe, a spectrometer connected with the liquid contact probe to detect the spectroscopic response energy to the probe and to output spectral data corresponding to the spectroscopic response energy, and a machine learning spectral data analyzer connected to the spectrometer for evaluation of the spectral data to determine a concentration value for each of water, amine component and captured carbon dioxide in the scrubbing solution, the machine learning spectral data analyzer being trained for each such component over a corresponding trained concentration range, and optionally over a trained temperature range to provide a temperature-compensated concentration value.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 25, 2021
    Assignee: ION Engineering, LLC
    Inventors: Charles Panaccione, Nathan R. Brown, Erik Everhardus Bernardus Meuleman
  • Publication number: 20200009499
    Abstract: A chemical processing system for removing carbon dioxide from a gas mixture using a multicomponent amine-based scrubbing solution includes a spectroscopic evaluation system with a liquid contact probe for spectroscopic investigation, an energy source connected with the liquid contact probe to provide the spectroscopic stimulation energy to the probe, a spectrometer connected with the liquid contact probe to detect the spectroscopic response energy to the probe and to output spectral data corresponding to the spectroscopic response energy, and a machine learning spectral data analyzer connected to the spectrometer for evaluation of the spectral data to determine a concentration value for each of water, amine component and captured carbon dioxide in the scrubbing solution, the machine learning spectral data analyzer being trained for each such component over a corresponding trained concentration range, and optionally over a trained temperature range to provide a temperature-compensated concentration value.
    Type: Application
    Filed: March 5, 2018
    Publication date: January 9, 2020
    Inventors: Charles Panaccione, Nathan R. Brown, Erik Everhardus Bernardus Meuleman
  • Publication number: 20190374898
    Abstract: A carbon dioxide capture system, fluid contactor and method are disclosed. In embodiments, a gas-liquid contactor unit is disposed along a process fluid flow axis and includes a contactor network of flow diversion barriers with flow voids for movement of process fluids therebetween. A plurality of heat exchange channels are provided in the flow diversion barriers to transport a heat exchange fluid through the contactor network. A heat exchange feed channel is provided to deliver feed of the heat exchange fluid to the heat exchange channels at multiple feed locations spaced along the flow axis. At least one heat exchange bypass channel may extend beyond the multiple feed locations to deliver a portion of the feed of the heat exchange fluid to additional heat exchange channels located downstream from the multiple feed locations for the heat exchange channels.
    Type: Application
    Filed: January 18, 2018
    Publication date: December 12, 2019
    Applicant: ION ENGINEERING, LLC
    Inventors: CHARLES PANACCIONE, ERIK EVERHARDUS BERNARDUS MEULEMAN, GREGORY ALLAN STAAB, NATHAN R. BROWN
  • Patent number: 8268115
    Abstract: An apparatus for applying different amounts of pressure to different locations of a semiconductor device structure or other substrate during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to individually apply pressure to a major surface of the semiconductor device structure during polishing thereof. Systems including the pressure application apparatus, as well as differential pressure application methods and polishing methods are also disclosed.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 18, 2012
    Assignee: Round Rock Research, LLC
    Inventor: Nathan R. Brown
  • Publication number: 20110239876
    Abstract: An apparatus for applying different amounts of pressure to different locations of a semiconductor device structure or other substrate during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to individually apply pressure to a major surface of the semiconductor device structure during polishing thereof. Systems including the pressure application apparatus, as well as differential pressure application methods and polishing methods are also disclosed.
    Type: Application
    Filed: April 26, 2011
    Publication date: October 6, 2011
    Applicant: Round Rock Research, LLC
    Inventor: Nathan R. Brown
  • Patent number: 7947190
    Abstract: An apparatus for applying different amounts of pressure to different locations of a backside of a semiconductor device structure during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to be biased against the backside of the semiconductor device structure during polishing thereof. The pressurization structures are independently movable with respect to one another. The amount of force or pressure applied by each pressurization structure to the backside of the semiconductor device structure is controlled by at least one corresponding actuator. The actuator may magnetically facilitate movement of the corresponding pressurization structure toward or away from the backside of the semiconductor device structure. The actuator may alternatively comprise a positive or negative pressure source.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 24, 2011
    Assignee: Round Rock Research, LLC
    Inventor: Nathan R. Brown
  • Patent number: 7935216
    Abstract: An apparatus for applying different amounts of pressure to different locations of a semiconductor device structure or other substrate during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to individually apply pressure to a major surface of the semiconductor device structure during polishing thereof. Systems including the pressure application apparatus, as well as differential pressure application methods and polishing methods are also disclosed.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 3, 2011
    Assignee: Round Rock Research, LLC
    Inventor: Nathan R. Brown
  • Patent number: 7285037
    Abstract: A differential pressure application apparatus is configured to apply different amounts of pressure to different locations of a substrate, such as a semiconductor device structure. The apparatus may be used during polishing or planarization processes. The apparatus includes physically discrete pressurization structures that may be moved independently from one another. An actuator may control the amount of force or pressure applied by each pressurization structure to the surface of the substrate. Systems including the pressure application apparatus, as well as differential pressure application methods and polishing methods are also disclosed.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 7074118
    Abstract: A polishing carrier head including a retaining ring for defining an area of a polishing pocket region used to polish a predetermined object, is provided. The polishing carrier head may further include a perforated plate positioned lateral to the retaining ring, the perforated plate having a plurality of perforations for permitting fluid flow. The polishing carrier head may further include a flexible membrane having a first region overlying a portion of the retaining ring and the perforated plate and a second region in which a first portion of the flexible membrane overlies a second portion of the flexible membrane to form one or more bellows. The polishing carrier head may further include an edge support ring in contact with the first region of the flexible membrane for clamping the first region of the flexible membrane to the perforated plate.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 11, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian E. Bottema, Keven A. Cline, Alex P. Pamatat, Nathan R. Brown
  • Patent number: 7066791
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the apparatus can include a membrane formed from a compressible, flexible material, such as neoprene or silicone, and having a first portion with a thickness greater than that of a second portion. The membrane can be aligned with the microelectronic substrate to bias the microelectronic substrate against a planarizing medium such that the first portion of the membrane biases the microelectronic substrate with a greater downward force than does the second portion of the membrane. Accordingly, the membrane can compensate for effects, such as varying linear velocities across the face of the substrate that would otherwise cause the substrate to planarize in a non-uniform fashion or, alternatively, the membrane can be used to selectively planarize portions of the microelectronic substrate at varying rates.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: June 27, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 7059937
    Abstract: A differential pressure application apparatus is configured to apply different amounts of pressure to different locations of a substrate, such as a semiconductor device structure. The apparatus may be used during polishing or planarization processes. The apparatus includes pressurization structures that may be moved independently from one another. An actuator may control the amount of force or pressure applied by each pressurization structure to the surface of the substrate. Systems including the pressure application apparatus, as well as differential pressure application methods and polishing methods are also disclosed.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 6899607
    Abstract: An apparatus for applying different amounts of pressure to different locations of a backside of a semiconductor device structure during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to be biased against the backside of the semiconductor device structure during polishing thereof. The pressurization structures are independently movable with respect to one another. The amount of force or pressure applied by each pressurization structure to the backside of the semiconductor device structure is controlled by at least one corresponding actuator. The actuator may magnetically facilitate movement of the corresponding pressurization structure toward or away from the backside of the semiconductor device structure. The actuator may alternatively comprise a positive or negative pressure source.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 31, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 6887138
    Abstract: A chemical mechanical polishing (CMP) tool holds a conditioning disk that is used to remove impurities from a polishing disk used to planarize surfaces, such as a semiconductor surface. The tool uses an elastic disk that is positioned between a clamp and a gimbal hub that pivotally overlies a gimbal plate. The elastic disk is a polymer material, such as for example polytetrafluoroethylene (PTFE). The elastic disk has a central opening and is radially solid around the central opening. Alignment holes and drive mechanism holes pierce the elastic disk which functions to rotate the tool with minimal friction and provides a liquid seal from CMP fluids. Access holes in the gimbal plate permit easy installation and removal of the individual components. The PTFE disk is strong and durable enough to withstand high torque and provide lengthy operation without maintenance.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: May 3, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian E. Bottema, Larry J. Bustos, Martin W. Cain, Nathan R. Brown
  • Patent number: 6881134
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the apparatus can include a membrane formed from a compressible, flexible material, such as neoprene or silicone, and having a first portion with a thickness greater than that of a second portion. The membrane can be aligned with the microelectronic substrate to bias the microelectronic substrate against a planarizing medium such that the first portion of the membrane biases the microelectronic substrate with a greater downward force than does the second portion of the membrane. Accordingly, the membrane can compensate for effects, such as varying linear velocities across the face of the substrate that would otherwise cause the substrate to planarize in a non-uniform fashion or, alternatively, the membrane can be used to selectively planarize portions of the microelectronic substrate at varying rates.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 6872131
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the apparatus can include a membrane formed from a compressible, flexible material, such as neoprene or silicone, and having a first portion with a thickness greater than that of a second portion. The membrane can be aligned with the microelectronic substrate to bias the microelectronic substrate against a planarizing medium such that the first portion of the membrane biases the microelectronic substrate with a greater downward force than does the second portion of the membrane. Accordingly, the membrane can compensate for effects, such as varying linear velocities across the face of the substrate that would otherwise cause the substrate to planarize in a non-uniform fashion or, alternatively, the membrane can be used to selectively planarize portions of the microelectronic substrate at varying rates.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 29, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 6869345
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the apparatus can include a membrane formed from a compressible, flexible material, such as neoprene or silicone, and having a first portion with a thickness greater than that of a second portion. The membrane can be aligned with the microelectronic substrate to bias the microelectronic substrate against a planarizing medium such that the first portion of the membrane biases the microelectronic substrate with a greater downward force than does the second portion of the membrane. Accordingly, the membrane can compensate for effects, such as varying linear velocities across the face of the substrate that would otherwise cause the substrate to planarize in a non-uniform fashion or, alternatively, the membrane can be used to selectively planarize portions of the microelectronic substrate at varying rates.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 22, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown
  • Patent number: 6863771
    Abstract: An apparatus for applying different amounts of pressure to different locations of a backside of a semiconductor device structure during polishing thereof. The apparatus is configured to be associated with a wafer carrier of a polishing apparatus and includes pressurization structures configured to be biased against the backside of the semiconductor device structure during polishing thereof. The pressurization structures are independently movable with respect to one another. The amount of force or pressure applied by each pressurization structure to the backside of the semiconductor device structure is controlled by at least one corresponding actuator. The actuator may magnetically facilitate movement of the corresponding pressurization structure toward or away from the backside of the semiconductor device structure. The actuator may alternatively comprise a positive or negative pressure source.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: March 8, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Nathan R. Brown