Patents by Inventor Neal D. McDaniel

Neal D. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200403232
    Abstract: Redox flow battery performance may be improved with a metal containing ionic liquid as a liquid electrolyte. Metal containing ionic liquids are liquids at all temperatures of interest and therefore do not need dilution. As such, voltage separation between the anolyte and catholyte may exceed 0.5 V and therefor rival current state-of-the-art energy storage technologies and with higher voltage separation may attain energy densities above 100 Wh/L.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: James Anthony Suttil, Sharmila K. Samaroo, Neal D. McDaniel, Jeffrey H. Drese, Alexander Zachariah Wilbee, Hongjin Tan
  • Patent number: 10870808
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. The process yields products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 22, 2020
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Patent number: 10865168
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to produce an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. Finally, the activation effluent is oligomerized. The process produced increased yields of products that meet specifications for a blend component of liquid transportation fuels.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 15, 2020
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wülfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339887
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. At least a portion of the activation effluent is alkylated to enhanced yields of products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339489
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to produce an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. Finally, the activation effluent is oligomerized. The process produced increased yields of products that meet specifications for a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339888
    Abstract: Systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The system comprises a first separator operable to separate a hydrocarbon feed stream into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. An isomerization reactor isomerizes the second fraction to convert at least a portion of the n-pentane to isopentane. The resulting isomerization effluent is combined with the hydrocarbon feed stream, allowing the isopentane produced in the isomerization reactor to be separated into the first fraction in the first separator. An activation reactor catalytically activates the first fraction to produce an activation effluent comprising olefins and aromatics. Certain embodiments additionally comprise either an oligomerization reactor or and alkylation reactor operable to further upgrade the activation effluent, thereby enhancing yields.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Publication number: 20200339896
    Abstract: Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. The process yields products that are suitable for use as a blend component of liquid transportation fuels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Jianhua Yao, Edward C. Weintrob, Matthew J. Wulfers, Bruce B. Randolph, Maziar Sardashti
  • Patent number: 10815438
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: October 27, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston
  • Patent number: 10774017
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. The process provides increased yields of upgraded hydrocarbon products that possess the characteristics of a liquid transportation fuel or a blend component thereof.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: September 15, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.
  • Patent number: 10745328
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 18, 2020
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.
  • Publication number: 20200109341
    Abstract: The present disclosure relates to systems operable to catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Edward C. Weintrob, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Robert M. Walston, Steven E. Lusk
  • Publication number: 20200109095
    Abstract: The present disclosure relates to processes that catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Edward C. Weintrob, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Robert M. Walston, Steven E. Lusk
  • Patent number: 10487277
    Abstract: Systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream that comprises both isopentane and n-pentane. The system separates the hydrocarbon feed stream to form a first fraction comprising isopentane and smaller hydrocarbons, and a second fraction comprising n-pentane and larger components of the hydrocarbon feeds stream. Each fraction is then catalytically-activated in a separate activation reactor containing a separate activation catalyst, where the conditions maintained in each reactor are selected to maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Optionally, the first activation reactor is maintained at a lower temperature than the second activation reactor.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: November 26, 2019
    Assignee: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Steven E. Lusk, Robert M. Walston, Jr.
  • Publication number: 20190300454
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. The process provides increased yields of upgraded hydrocarbon products that possess the characteristics of a liquid transportation fuel or a blend component thereof.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Mazi Sardashti, Steven E. Lusk, Robert M. Walton
  • Publication number: 20190300804
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Mazi Sardashti, Steven E. Lusk, Robert M. Walston
  • Publication number: 20190300805
    Abstract: The present disclosure relates generally to systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. The system separates the hydrocarbon feed stream to form a first fraction comprising isopentane and smaller hydrocarbons, and a second fraction comprising n-pentane and larger components of the hydrocarbon feeds stream. Each fraction is then catalytically-activated in a separate activation reactor containing a separate activation catalyst, where the conditions maintained in each reactor are selected to maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first activation reactor is maintained at a lower temperature than the second activation reactor.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Mazi Sardashti, Steven E. Lusk, Robert M. Walston
  • Publication number: 20190300455
    Abstract: The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Soumen Kundu, Jianhua Yao, Bruce B. Randolph, Mazi Sardashti, Steven E. Lusk, Robert M. Walston
  • Publication number: 20170067169
    Abstract: The current embodiment describes a process of flowing an oxidant species over the reducing side of an oxygen transport membrane. O2? anions are then continuously transported from the reducing side through the oxygen transport membrane to the oxidizing side where an organic compound is converted to a partially oxidized organic compound on the oxidizing side.
    Type: Application
    Filed: August 22, 2016
    Publication date: March 9, 2017
    Applicant: PHILLLIPS 66 COMPANY
    Inventors: David B. Ingram, Bruce B. Randolph, Mitchell E. Loescher, Aalo K. Gupta, Uchenna P. Paul, Chris J. LaFrancois, Neal D. McDaniel, Danielle K. Smith, David M. Bierschenk, Ting He
  • Publication number: 20160101409
    Abstract: A catalyst for steam reforming. The catalyst comprises an active site of NiCu or NiCuZn, from about 15 wt % to about 25 wt % of the catalyst, a composition comprising at least one promoter and at least one support modifier, from about 5 wt % to about 30 wt % of the catalyst, and a support.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 14, 2016
    Applicant: PHILLIPS 66 COMPANY
    Inventors: William Chadwick Ellis, Uchenna Paul, Danielle Smith, Bruce B. Randolph, Neal D. McDaniel, Jon Nelson, Larry Johnston
  • Publication number: 20140224663
    Abstract: The method begins by forming a solution comprising catalyst precursors, electrolyte and a solvent. Electrodes are inserted into the solution comprising an anode electrode and a cathode electrode. Electrochemical deposition then occurs wherein a current is passed between the electrodes. In this method at least one additional step of: i) heating the solution prior to and during the electrochemical deposition; ii) increasing the concentration of the catalyst precursors in the solution to greater than 0.1 millimolar; iii) performing the electrochemical deposition by a pulsed current; and iv) adding chemical promoters to the solution.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Mahaprasad Kar, Neal D. McDaniel, Danielle K. Smith, Dennis G. Schultz, Bruce B. Randolph