Patents by Inventor Neeraj Sangar

Neeraj Sangar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9464166
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: October 11, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20160280616
    Abstract: In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
    Type: Application
    Filed: December 21, 2015
    Publication date: September 29, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Neeraj Sangar, Lorenzo C. DeCaul, Ali A. Kheir
  • Publication number: 20160176785
    Abstract: A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X? dialkylbiphenyl isomer (where X? is 2?, 3? and/or 4?), into at least one different isomer, 3,3?, 3,4? and/or 4,4? dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 23, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Emiel de Smit, Neeraj Sangar, Scott J. Weigel, Sumathy Raman, Terry E. Helton, Lorenzo C. DeCaul, Christine N. Ella, Chuansheng Bai, Ranjita Ghose
  • Publication number: 20160145170
    Abstract: A catalyst system and processes for combined aromatization and selective hydrogen combustion of oxygenated hydrocarbons are disclosed. The catalyst system contains at least one aromatization component and at least one selective hydrogen combustion component. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the aromatization component alone.
    Type: Application
    Filed: October 7, 2015
    Publication date: May 26, 2016
    Inventors: Paul F. Keusenkothen, Seth M. Washburn, Neeraj Sangar, Nikolaos Soultanidis, Mayank Shekhar
  • Publication number: 20160115095
    Abstract: In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 28, 2016
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Gregory J. De Martin, Michael Salciccioli, Neeraj Sangar, Aaron B. Pavlish, Ali A. Kheir, Gary D. Mohr
  • Patent number: 9321003
    Abstract: The invention generally relates to processes for upgrading a process stream, such as those containing C2+ olefin and one or more acidic gases, to equipment useful in such processes, and to upgraded process streams.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Radzicki, Neeraj Sangar, Michael Moran, Matthew B. Yarrison
  • Publication number: 20160096168
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises molybdenum or a compound thereof dispersed on an aluminosilicate zeolite, wherein the amount of aluminum present as aluminum molybdate in the catalyst is less than 2700 ppm by weight.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventors: Neeraj Sangar, Teng Xu, Larry L. Iaccino, Mobae Afeworki
  • Publication number: 20150361011
    Abstract: In a process for producing dialkylbiphenyl compounds, a feed comprising substituted cyclohexylbenzene isomers having the formula (I): wherein each of R1 and R2 is an alkyl group and wherein the feed comprises m % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the feed; is transalkylated with a compound of formula (II): to produce a transalkylation product comprising substituted cyclohexylbenzene isomers having the formula (I) and including n % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the transalkylation product, wherein n<m. At least part of the transalkylation product is then dehydrogenated under conditions effective to convert at least part of the substituted cyclohexylbenzene isomers in the transalkylation product to dialkylbiphenyl compounds.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 17, 2015
    Inventors: Michael Salciccioli, Tan-Jen Chen, Neeraj Sangar, Ali A. Kheir, Aaron B. Pavlish
  • Patent number: 9067851
    Abstract: A selective hydrogenation method is particularly effective in selectively hydrogenating alkynyl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene. The method produces a relatively high quantity of heat during the selective hydrogenation reaction. This production of heat is, however, quite beneficial in that enough heat is produced such that a substantial portion of the produced heat can be recovered for heat efficiency purposes.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: June 30, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Neeraj Sangar, Paul F. Keusenkothen
  • Publication number: 20150080546
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20150080545
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Publication number: 20140378697
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel
  • Publication number: 20140316178
    Abstract: The invention generally relates to processes for upgrading a process stream, such as those containing C2+ olefin and one or more acidic gases, to equipment useful in such processes, and to upgraded process streams.
    Type: Application
    Filed: February 17, 2014
    Publication date: October 23, 2014
    Inventors: Michael A. Radzicki, Neeraj Sangar, Michael Moran, Matthew B. Yarrison
  • Patent number: 8859835
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Patent number: 8841227
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises a support and molybdenum or a compound thereof dispersed on the support. The support comprises an aluminosilicate zeolite combined with a binder selected from silica, titania, zirconia and mixtures thereof. The catalyst is substantially free of aluminum external to the framework of the aluminosilicate zeolite.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Neeraj Sangar, Jocelyn A. Kowalski, Larry L. Iaccino, Kenneth R. Clem
  • Publication number: 20140275607
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently an integer from 1 to 3, is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound. The dehydrogenation catalyst comprises an element or compound thereof from Group 10 of the Periodic Table of Elements deposited on a refractory support, such as alumina.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Jihad M. Dakka, Chuansheng Bai, James J. Tanke, Gregory J. De Martin, Mary T. Van Nostrand, Michael Salciccioli, Ali A. Kheir, Neeraj Sangar
  • Publication number: 20130204056
    Abstract: A selective hydrogenation method is particularly effective in selectively hydrogenating alkynyl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene. The method produces a relatively high quantity of heat during the selective hydrogenation reaction. This production of heat is, however, quite beneficial in that enough heat is produced such that a substantial portion of the produced heat can be recovered for heat efficiency purposes.
    Type: Application
    Filed: August 9, 2012
    Publication date: August 8, 2013
    Inventors: S. Mark Davis, Neeraj Sangar, Paul F. Keusenkothen
  • Publication number: 20120083637
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Application
    Filed: August 26, 2011
    Publication date: April 5, 2012
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Patent number: 7977519
    Abstract: In a process for converting methane to higher hydrocarbons including aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert said methane to aromatic hydrocarbons. A first portion of the catalyst is transferred from the reaction zone to a heating zone, where the first catalyst portion is heated by contacting the catalyst with hot combustion gases generated by burning a supplemental source of fuel. The heated first catalyst portion is then returned to the reaction zone.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 12, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens
  • Patent number: 7968759
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is supplied to one or more reaction zone(s) containing catalytic material operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons; the reaction zone(s) being operated with an inverse temperature profile.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 28, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar, Jeremy J. Patt