Patents by Inventor Neeraj Sangar

Neeraj Sangar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7951985
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert the methane to aromatic hydrocarbons. The reaction zone is contained within a reactor and the reactor or an internal component of the reactor has at least one surface that is chemically exposed to the feed and is formed from a refractory material that exhibits a carbon uptake (mass of carbon absorbed per unit of exposed metal surface area) of less than 25 g/m2 when exposed to mixture of 50 vol % methane and 50 vol % H2 at 900° C. for 168 hours.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: May 31, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Neeraj Sangar, Larry L. Iaccino, Jeffrey P. Jones
  • Publication number: 20110105816
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert the methane to aromatic hydrocarbons. The reaction zone is contained within a reactor and the reactor or an internal component of the reactor has at least one surface that is chemically exposed to the feed and is formed from a refractory material that exhibits a carbon uptake (mass of carbon absorbed per unit of exposed metal surface area) of less than 25 g/m2 when exposed to mixture of 50 vol % methane and 50 vol % H2 at 900° C. for 168 hours.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Inventors: Neeraj Sangar, Larry L. Iaccino, Jeffrey P. Jones
  • Publication number: 20110054232
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises molybdenum or a compound thereof dispersed on an aluminosilicate zeolite, wherein the amount of aluminum present as aluminum molybdate in the catalyst is less than 2700 ppm by weight.
    Type: Application
    Filed: February 5, 2009
    Publication date: March 3, 2011
    Inventors: Neeraj Sangar, Teng Xu, Larry L. Iaccino, Mobae Afeworki
  • Patent number: 7893308
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert the methane to aromatic hydrocarbons. The reaction zone is contained within a reactor and the reactor or an internal component of the reactor has at least one surface that is chemically exposed to the feed and is formed from a refractory material that exhibits a carbon uptake (mass of carbon absorbed per unit of exposed metal surface area) of less than 25 g/m2 when exposed to mixture of 50 vol % methane and 50 vol % H2 at 900° C. for 168 hours.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Neeraj Sangar, Larry L. Iaccino, Jeffrey P. Jones
  • Publication number: 20110040135
    Abstract: In a process for converting methane to higher hydrocarbons including aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert said methane to aromatic hydrocarbons. A first portion of the catalyst is transferred from the reaction zone to a heating zone, where the first catalyst portion is heated by contacting the catalyst with hot combustion gases generated by burning a supplemental source of fuel. The heated first catalyst portion is then returned to the reaction zone.
    Type: Application
    Filed: February 8, 2010
    Publication date: February 17, 2011
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens
  • Patent number: 7888543
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) comprises providing a hydrocarbon feedstock containing methane and a catalytic particulate material to a reactor system having at least first and second reaction zones connected in series. Each of the reaction zones is operated under reaction conditions sufficient to convert at least a portion of the methane to said higher hydrocarbon(s) and is maintained in a moving bed fashion, with the bulk of the catalytic particulate material being moved from the first reaction zone to the second reaction zone and with the bulk of the hydrocarbon feedstock being moved from the second reaction zone to the first reaction zone.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar
  • Publication number: 20100331592
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises a support and molybdenum or a compound thereof dispersed on the support. The support comprises an aluminosilicate zeolite combined with a binder selected from silica, titania, zirconia and mixtures thereof. The catalyst is substantially free of aluminum external to the framework of the aluminosilicate zeolite.
    Type: Application
    Filed: December 22, 2008
    Publication date: December 30, 2010
    Inventors: Neeraj Sangar, Jocelyn A. Kowalski, Larry L. Iaccino, Kenneth R. Clem
  • Publication number: 20100305374
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is supplied to one or more reaction zone(s) containing catalytic material operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons; the reaction zone(s) being operated with an inverse temperature profile.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 2, 2010
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar, Jeremy J. Patt
  • Patent number: 7795490
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is supplied to one or more reaction zone(s) containing catalytic material operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons; the reaction zone(s) being operated with an inverse temperature profile.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: September 14, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar, Jeremy J. Patt
  • Patent number: 7781636
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) in a reaction zone comprises providing to a hydrocarbon feedstock containing methane and a catalytic particulate material to the reaction zone and contacting the catalytic particulate material and the hydrocarbon feedstock in a substantially countercurrent fashion in the reaction zone, while operating the reaction zone under reaction conditions sufficient to convert at least a portion of said methane to a first effluent having said higher hydrocarbon(s).
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens, Matthew J. Vincent
  • Patent number: 7728186
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions including a first maximum temperature effective to convert the methane to aromatic hydrocarbons and generate coke on the catalyst. A portion of the coked catalyst is transferred from the reaction zone to a separate regeneration zone, where the catalyst portion is contacted with a regeneration gas under conditions including a second maximum temperature less than or equal to the first maximum temperature and effective to at least partially remove coke from the catalyst portion. Before being returned to the reaction zone, the regenerated catalyst portion is contacted with a carburizing gas in a catalyst treatment zone separate from the reaction zone at a third maximum temperature less than the first maximum temperature.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 1, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens
  • Patent number: 7700816
    Abstract: An oxygenate conversion catalyst useful in the conversion of oxygenates such as methanol to olefinic products may be improved by the use of a catalyst combination based on a molecular sieve in combination with a co-catalyst comprising a mixed metal oxide composition which has oxidation/reduction functionality under the conditions of the conversion. This metal oxide co-catalyst component will comprise a mixed oxide of one or more, preferably at least two, transition metals, usually of Series 4, 5 or 6 of the Periodic Table, with the metals of Series 4 being preferred, as an essential component of the mixed oxide composition. The preferred transition metals are those of Groups 5, especially titanium and vanadium, Group 6, especially chromium or molybdenum, Group 7, especially manganese and Group 8, especially cobalt or nickel. Other metal oxides may also be present.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: April 20, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Tan-Jen Chen, Neeraj Sangar, John Di Yi Ou
  • Patent number: 7683227
    Abstract: In a process for converting methane to higher hydrocarbons including aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert said methane to aromatic hydrocarbons. A first portion of the catalyst is transferred from the reaction zone to a heating zone, where the first catalyst portion is heated by contacting the catalyst with hot combustion gases generated by burning a supplemental source of fuel. The heated first catalyst portion is then returned to the reaction zone.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens
  • Patent number: 7659437
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) comprises providing a hydrocarbon feedstock containing methane and a catalytic particulate material to a reactor system having at least first and second reaction zones connected in series. Each of the reaction zones is operated under reaction conditions sufficient to convert at least a portion of the methane to said higher hydrocarbon(s) and is maintained in a moving bed fashion, with the bulk of the catalytic particulate material being moved from the first reaction zone to the second reaction zone and with the bulk of the hydrocarbon feedstock being moved from the second reaction zone to the first reaction zone.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar
  • Patent number: 7589246
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane and a particulate catalytic material are supplied to a reaction zone operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons and to deposit carbonaceous material on the particulate catalytic material causing catalyst deactivation. At least a portion of the deactivated particulate catalytic material is removed from the reaction zone and is heated to a temperature of about 700° C. to about 1200° C. by direct and/or indirect contact with combustion gases produced by combustion of a supplemental fuel. The heated particulate catalytic material is then regenerated with a hydrogen-containing gas under conditions effective to convert at least a portion of the carbonaceous material thereon to methane and the regenerated catalytic particulate material is recycled back to the reaction zone.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Teng Xu, J. Scott Buchanan, Neeraj Sangar, Jeremy J. Patt, Mark A. Nierode, Kenneth R. Clem, Mobae Afeworki
  • Publication number: 20080249342
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane and a particulate catalytic material are supplied to a reaction zone operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons and to deposit carbonaceous material on the particulate catalytic material causing catalyst deactivation. At least a portion of the deactivated particulate catalytic material is removed from the reaction zone and is heated to a temperature of about 700° C. to about 1200° C. by direct and/or indirect contact with combustion gases produced by combustion of a supplemental fuel. The heated particulate catalytic material is then regenerated with a hydrogen-containing gas under conditions effective to convert at least a portion of the carbonaceous material thereon to methane and the regenerated catalytic particulate material is recycled back to the reaction zone.
    Type: Application
    Filed: March 3, 2008
    Publication date: October 9, 2008
    Inventors: Larry L. Iaccino, Teng Xu, J. Scott Buchanan, Neeraj Sangar, Jeremy J. Patt, Mark A. Nierode, Kenneth R. Clem, Mobae Afeworki
  • Publication number: 20080051617
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert the methane to aromatic hydrocarbons. The reaction zone is contained within a reactor and the reactor or an internal component of the reactor has at least one surface that is chemically exposed to the feed and is formed from a refractory material that exhibits a carbon uptake (mass of carbon absorbed per unit of exposed metal surface area) of less than 25 g/m2 when exposed to mixture of 50 vol % methane and 50 vol % H2 at 900° C. for 168 hours.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 28, 2008
    Inventors: Neeraj Sangar, Larry L. Iaccino, Jeffrey P. Jones
  • Publication number: 20070293709
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) in a reaction zone comprises providing to a hydrocarbon feedstock containing methane and a catalytic particulate material to the reaction zone and contacting the catalytic particulate material and the hydrocarbon feedstock in a substantially countercurrent fashion in the reaction zone, while operating the reaction zone under reaction conditions sufficient to convert at least a portion of said methane to a first effluent having said higher hydrocarbon(s).
    Type: Application
    Filed: April 2, 2007
    Publication date: December 20, 2007
    Inventors: Larry Iaccino, Neeraj Sangar, Elizabeth Stavens, Matthew Vincent
  • Publication number: 20070276171
    Abstract: In a process for converting methane to higher hydrocarbons including aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst in a reaction zone under conditions effective to convert said methane to aromatic hydrocarbons. A first portion of the catalyst is transferred from the reaction zone to a heating zone, where the first catalyst portion is heated by contacting the catalyst with hot combustion gases generated by burning a supplemental source of fuel. The heated first catalyst portion is then returned to the reaction zone.
    Type: Application
    Filed: April 21, 2006
    Publication date: November 29, 2007
    Inventors: Larry Iaccino, Neeraj Sangar, Elizabeth Stavens
  • Publication number: 20070249879
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) comprises providing a hydrocarbon feedstock containing methane and a catalytic particulate material to a reactor system having at least first and second reaction zones connected in series. Each of the reaction zones is operated under reaction conditions sufficient to convert at least a portion of the methane to said higher hydrocarbon(s) and is maintained in a moving bed fashion, with the bulk of the catalytic particulate material being moved from the first reaction zone to the second reaction zone and with the bulk of the hydrocarbon feedstock being moved from the second reaction zone to the first reaction zone.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 25, 2007
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Neeraj Sangar