Patents by Inventor Neil Gibson

Neil Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067731
    Abstract: Provided herein are antibodies that specifically bind to MICA/B having variable heavy chain domains (VH), variable light chain domains (VL), and complementarity determining regions disclosed herein, as well as methods and uses thereof.
    Type: Application
    Filed: June 1, 2023
    Publication date: February 29, 2024
    Inventors: Neil Gibson, Justin Chapman, Xin Du
  • Patent number: 11695320
    Abstract: In some examples, a circuit includes a resistor network, a filter, a current generator, and a capacitor. The resistor network has a resistor network output and is adapted to be coupled between a switch terminal of a power converter (104) and a ground terminal. The filter has a filter input and a filter output, the filter input coupled to the resistor network output. The current generator has a current generator output and first and second current generator inputs, the first current generator input configured to receive an input voltage and the second current generator input coupled to the filter output. The capacitor is coupled between the current generator output and the ground terminal.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: July 4, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Zhangyi Xie, Neil Gibson, Stefan Herzer
  • Patent number: 11581810
    Abstract: A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 14, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Neil Gibson, Stefan Herzer
  • Patent number: 11569741
    Abstract: In some examples, a circuit comprises a first field effect transistor (FET) having a first gate adapted to couple to a reference voltage source, a first source coupled to a first current source, and a first drain coupled to a second current source. The circuit comprises a second FET having a second gate coupled to the first drain, a second drain coupled to the first current source, and a second source coupled to a first resistor. The circuit comprises a third FET having a third gate adapted to couple to a feedback loop of a voltage converter, a third source coupled to a third current source, and a third drain coupled to a fourth current source. The circuit comprises a fourth FET having a fourth gate coupled to the third drain, a fourth drain coupled to the third current source, and a fourth source coupled to a second resistor.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: January 31, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Neil Gibson, Stefan Herzer
  • Publication number: 20220158554
    Abstract: In some examples, a circuit comprises a first field effect transistor (FET) having a first gate adapted to couple to a reference voltage source, a first source coupled to a first current source, and a first drain coupled to a second current source. The circuit comprises a second FET having a second gate coupled to the first drain, a second drain coupled to the first current source, and a second source coupled to a first resistor. The circuit comprises a third FET having a third gate adapted to couple to a feedback loop of a voltage converter, a third source coupled to a third current source, and a third drain coupled to a fourth current source. The circuit comprises a fourth FET having a fourth gate coupled to the third drain, a fourth drain coupled to the third current source, and a fourth source coupled to a second resistor.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 19, 2022
    Inventors: Neil GIBSON, Stefan HERZER
  • Publication number: 20220158537
    Abstract: In some examples, a circuit includes a resistor network, a filter, a current generator, and a capacitor. The resistor network has a resistor network output and is adapted to be coupled between a switch terminal of a power converter (104) and a ground terminal. The filter has a filter input and a filter output, the filter input coupled to the resistor network output. The current generator has a current generator output and first and second current generator inputs, the first current generator input configured to receive an input voltage and the second current generator input coupled to the filter output. The capacitor is coupled between the current generator output and the ground terminal.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 19, 2022
    Inventors: Zhangyi Xie, Neil Gibson, Stefan Herzer
  • Publication number: 20210344272
    Abstract: A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Neil GIBSON, Stefan HERZER
  • Publication number: 20210253711
    Abstract: Provided herein are antibodies that specifically bind to MICA/B having heavy chain, light chain, variable heavy chain domains (VH), variable light chain domains (VL), and complementarity determining regions (CDRs) disclosed herein, as well as methods and uses thereof.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 19, 2021
    Inventors: Neil GIBSON, Justin CHAPMAN, Xin DU
  • Patent number: 11095220
    Abstract: A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 17, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Neil Gibson, Stefan Herzer
  • Publication number: 20210159787
    Abstract: A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Neil GIBSON, Stefan HERZER
  • Publication number: 20210122819
    Abstract: Disclosed herein are specific and pan antibodies that interact with one or more members of the LILRB receptor family. In some instances, also described herein are pharmaceutical compositions that comprise one or more anti-LILRB antibodies and methods of modulating inflammatory macrophage activation, lymphocyte activation, and phagocytosis.
    Type: Application
    Filed: January 18, 2019
    Publication date: April 29, 2021
    Inventors: Neil GIBSON, Graham THOMAS, Justin CHAPMAN, Safak YALCIN
  • Publication number: 20210047417
    Abstract: Provided herein are antibodies that specifically bind to MICA/B having variable heavy chain domains (VH), variable light chain domains (VL), and complementarity determining regions disclosed herein, as well as methods and uses thereof
    Type: Application
    Filed: July 24, 2020
    Publication date: February 18, 2021
    Inventors: Neil Gibson, Justin Chapman, Xin Du
  • Patent number: 10873303
    Abstract: An amplifier includes an input stage. The input stage includes a differential pair and a load circuit. The differential pair includes a first transistor and a second transistor. The first transistor and the second transistor are configured to amplify a received differential signal. The load circuit connects the differential pair to a reference voltage. The load circuit is configured to vary in resistance in inverse proportion to the transconductance of the first transistor and the second transistor.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 22, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Neil Gibson
  • Patent number: 10705159
    Abstract: An integrated fluxgate device has a magnetic core disposed over a semiconductor substrate. A first winding is disposed in a first metallization level above and a second metallization level below the magnetic core, and is configured to generate a first magnetic field in the magnetic core. A second winding is disposed in the first and second metallization levels and is configured to generate a second magnetic field in the magnetic core. A third winding is disposed in the first and second metallization levels and is configured to sense a magnetic field in the magnetic core that is the net of the first and second magnetic fields.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Erika Lynn Mazotti, Dok Won Lee, William David French, Byron J R Shulver, Thomas Dyer Bonifield, Ricky Alan Jackson, Neil Gibson
  • Patent number: 10630174
    Abstract: Disclosed examples include a transient event detector circuit to detect transient events in a switching converter, including a DLL circuit to detect changes in a duty cycle of a pulse width modulation signal used to operate a switching converter, and an output circuit to provide a status output signal in a first state when no transient event is detected, and to provide the status output signal in a second state indicating a transient event in the switching converter in response to a detected change in the duty cycle of the pulse width modulation signal.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 21, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Michael Couleur, Neil Gibson, Antonio Priego
  • Patent number: 10601412
    Abstract: Disclosed examples include self-biased DLL circuits to generate a bias current signal proportional to a repetition frequency of a first signal representing continuous switching or discontinued switching operation of the DC-DC converter. The DLL circuit includes a monostable multivibrator to provide a pulse output signal in response to an edge of the first signal with a pulse duration set by a control current signal, a phase detector to provide output signals according to a phase difference between an edge of the pulse output signal and the first signal, and an output circuit to provide an output signal according to the phase detector output signals and according to an offset signal, to provide the bias current signal according to the output signal, and to provide the control current signal according to the output signal.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: March 24, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Michael Couleur, Neil Gibson, Antonio Priego
  • Publication number: 20190324097
    Abstract: An integrated fluxgate device has a magnetic core disposed over a semiconductor substrate. A first winding is disposed in a first metallization level above and a second metallization level below the magnetic core, and is configured to generate a first magnetic field in the magnetic core. A second winding is disposed in the first and second metallization levels and is configured to generate a second magnetic field in the magnetic core. A third winding is disposed in the first and second metallization levels and is configured to sense a magnetic field in the magnetic core that is the net of the first and second magnetic fields.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Erika Lynn Mazotti, Dok Won Lee, William David French, Byron J.R. Shulver, Thomas Dyer Bonifield, Ricky Alan Jackson, Neil Gibson
  • Patent number: 10345397
    Abstract: An integrated fluxgate device has a magnetic core on a control circuit. The magnetic core has a volume and internal structure sufficient to have low magnetic noise and low non-linearity. A stress control structure is disposed proximate to the magnetic core. An excitation winding, a sense winding and a compensation winding are disposed around the magnetic core. An excitation circuit disposed in the control circuit is coupled to the excitation winding, configured to provide current at high frequency to the excitation winding sufficient to generate a saturating magnetic field in the magnetic core during each cycle at the high frequency. An isolation structure is disposed between the magnetic core and the windings, sufficient to enable operation of the excitation winding and the sense winding at the high frequency at low power.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: July 9, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Erika Lynn Mazotti, Dok Won Lee, William David French, Byron J R Shulver, Thomas Dyer Bonifield, Ricky Alan Jackson, Neil Gibson
  • Patent number: 10340803
    Abstract: A DC-to-DC voltage converter includes a converter input for receiving a DC voltage. A first switch is coupled between the input and a first node. A second switch is coupled between the first node and a ground. An inductor is coupled between the first node and a converter output. A capacitor is coupled between the converter output and ground. An output voltage synthesizer is coupled to the converter input and the converter output for synthesizing the voltage at the first node and for generating a control signal for at least one of the first switch and the second switch in response to the voltages at the converter input and the converter output.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: July 2, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Neil Gibson, Michael Couleur, Antonio Priego, Stefan Herzer, Syed Wasif Mehdi
  • Publication number: 20190149093
    Abstract: An amplifier includes an input stage. The input stage includes a differential pair and a load circuit. The differential pair includes a first transistor and a second transistor. The first transistor and the second transistor are configured to amplify a received differential signal. The load circuit connects the differential pair to a reference voltage. The load circuit is configured to vary in resistance in inverse proportion to the transconductance of the first transistor and the second transistor.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 16, 2019
    Inventor: Neil GIBSON