Patents by Inventor Neil T. Scholl

Neil T. Scholl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931469
    Abstract: An absorbent article comprising an absorbent member positioned between a topsheet and a backsheet is provided. The absorbent member contains at least one layer that comprises porous superabsorbent particles, wherein the particles exhibit a relative humidity microclimate of about 67% or less after being exposed to an atmosphere having a temperature of about 23° C. and relative humidity of 80% for a time period of 20 minutes.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 19, 2024
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Yuriy Galabura, Mark M. Mleziva, John Gavin MacDonald, Vasily A. Topolkaraev, Michelle McBride, Karien J. Rodriguez, Matthew Valaskey, Dave Soerens, Neil T. Scholl, WanDuk Lee
  • Publication number: 20240060222
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: August 31, 2023
    Publication date: February 22, 2024
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20230372897
    Abstract: Superabsorbent particles having less than 1000 ppm non-solvent, a median size of from about 50 to about 2,000 micrometers, and containing nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers are provided. The superabsorbent particles exhibit a Vortex Time of about 80 seconds or less.
    Type: Application
    Filed: October 30, 2020
    Publication date: November 23, 2023
    Inventors: Neil T. Scholl, Jian Qin, James Dudek, Priyadarshini Gadgil, Feng Chen, Joy Lynn Holgerson
  • Patent number: 11788221
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: October 17, 2023
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11767615
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed front a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: September 26, 2023
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo
  • Patent number: 11596924
    Abstract: Superabsorbent particles have a median size of from about 50 to about 2,000 micrometers and contain a porous network that includes a plurality of nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers, wherein the superabsorbent particles exhibit a Vortex Time of about 80 seconds or less and a free swell gel bed permeability (GBP) of 5 darcys or more, of 10 darcys or more, of 20 darcys or more, of 30 darcys or more, of 60 darcys or more, or of 90 darcys or more. A method for forming such superabsorbent particles includes forming a composition that contains a superabsorbent polymer and a solvent system; contacting the composition with a non-solvent system to initiate formation of the porous network through phase inversion; removing non-solvent from the composition; and surface crosslinking the superabsorbent particles.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 7, 2023
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Austin N. Pickett, Karen Goeders, Mark M. Mleziva, Theodore T. Tower, WanDuk Lee, Neil T. Scholl, Lori A. Eslinger, Yuriy Galabura, Dave Soerens, Kazuhiro Takahashi, Yusuke Ueda, Megumi Tomioka
  • Patent number: 11434340
    Abstract: A shaped polymeric material having a three-dimensional configuration with one or more angular displacements is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains, and a porous network is defined in the material.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: September 6, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl
  • Patent number: 11377525
    Abstract: A color-changing polymeric material is provided. The material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer, colorant, microinclusion additive, and nanoinclusion additive, wherein the microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains. A porous network is formed in the polymeric material when subjected to a deformational strain in a solid state. The polymeric material exhibits a first color prior to being subjected to the deformational strain and a second color after being subjected to the deformational strain, the first color being different than the second color.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 5, 2022
    Assignee: Kimberly-Clark, Worldwide, Inc.
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Antonio J. Carrillo Ojeda, Brent M. Thompson
  • Publication number: 20220205154
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11345791
    Abstract: A polymeric material that includes a thermoplastic composition containing a continuous phase that includes a matrix polymer and a siloxane component is provided. The siloxane component contains an ultrahigh molecular weight siloxane polymer that is dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 31, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ryan J. McEneany, Yuriy Galabura, Antonio J. Carrillo Ojeda, Neil T. Scholl, Vasily A. Topolkaraev, David W. Hall, Juha P. Kemppinen, Peter S. Lortscher, Lori A. Eslinger, Brent M. Thompson, Gregory J. Wideman
  • Patent number: 11313061
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: April 26, 2022
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Patent number: 11286362
    Abstract: A polymeric material for use in thermal insulation is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer and within which a microinclusion additive and nanoinclusion additive are dispersed in the form of discrete domains. A porous network is defined in the material that includes a plurality of nanopores having an average cross-sectional dimension of about 800 nanometers or less. The polymeric material exhibits a thermal conductivity of about 0.20 watts per meter-kelvin or less.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: March 29, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Charles Wilson Colman, Mark M. Mleziva
  • Publication number: 20220015960
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material may comprise a plurality of fibers and may further comprise an opposing first surface and a second surface, an apertured zone comprising a plurality of nodes extending away from a base plane on the first surface, a plurality of connecting ligaments interconnecting the plurality of nodes, and a plurality of openings providing a percent open area for the apertured zone that is greater than about 15%, as determined by the Material Sample Analysis Test Method. The material may further comprise a first and second side zones with the nonwoven material having a material width and the first and second side zones having first and second side zone widths, and wherein each of the first and second side zone widths are between about 5% and about 25% of the nonwoven material width.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220015964
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material may comprise a plurality of fibers, a first surface, and an apertured zone comprising: a plurality of nodes extending away from a base plane on the first surface, a plurality of connecting ligaments interconnecting the plurality of nodes, wherein a majority of the plurality of nodes include at least three connecting ligaments connecting to adjacent nodes, and a plurality of openings. The apertured zone may further comprise a lane of nodes which extends substantially in the longitudinal direction, and wherein the lane of nodes extending substantially in the longitudinal direction is formed of longitudinally adjacent nodes which are aligned such that lines drawn between centers of longitudinally adjacent nodes within the lane of nodes each form an angle with respect to the longitudinal direction of less than about 20 degrees.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220015963
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material comprising a plurality of fibers may comprise a first surface and a second surface, the first surface being opposite from the second surface, and an apertured zone. The apertured zone may comprise a plurality of nodes extending away from a base plane on the first surface, a plurality of connecting ligaments interconnecting the plurality of nodes, wherein a majority of the plurality of nodes include at least three connecting ligaments connecting to adjacent nodes, and a plurality of openings providing a percent open area for the apertured zone of the nonwoven material from about 10% to about 60%, as determined by the Material Sample Analysis Test Method.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220015961
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material comprising a plurality of fibers can include a first surface and a second surface. The first surface can be opposite from the second surface. The nonwoven material can include a plurality of nodes extending away from a base plane on the first surface. At least a majority of the plurality of nodes have an anisotropy value greater than 1.0 as determined by the Node Analysis Test Method.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva
  • Publication number: 20220008262
    Abstract: Three dimensional nonwoven materials and absorbent articles comprising such materials are disclosed. In one embodiment, an absorbent article may comprise an outer cover, a bodyside liner, an absorbent body, and a nonwoven material coupled to the bodyside liner. The nonwoven material may comprise an apertured zone providing a percent open area for the apertured zone that is greater than about 15%. The nonwoven material may be coupled to liner by a front waist bond forming a front waist bonding region which extends through the apertured zone and a rear waist bond forming a rear waist bonding region, wherein the rear waist bonding region has a length that is between about 2% and about 10% of the material length and the front waist bonding region has a length that is between about 20% and about 50% of the material length.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 13, 2022
    Inventors: Antonio J. CARRILLO OJEDA, Davis Dang H. NHAN, Neil T. SCHOLL, Vasily A. TOPOLKARAEV, David G. BIGGS, Patrick D. ABNEY, Jonathan A. BAKER, Mark M. MLEZIVA, Steven J. ROFFERS, Dustin J. SMITH
  • Publication number: 20220000680
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. An absorbent article can include an absorbent body and an outer cover. The absorbent article can also include a fluid-entangled nonwoven material. The absorbent body can be disposed between the fluid-entangled nonwoven material and the outer cover. The fluid-entangled nonwoven can include a first surface and a second surface. The nonwoven material can also include a plurality of nodes extending away from abase plane on the first surface towards the absorbent body. The nonwoven material can further include a plurality of openings extending from the first surface to the second surface through the fluid-entangled nonwoven material. Individual openings of the plurality of openings can be disposed between adjacent nodes of the plurality of nodes.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 6, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220002911
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed front a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carillo
  • Publication number: 20210388547
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a method can include providing a precursor web that includes a plurality of fibers and transferring the precursor web to a forming surface having a plurality of forming holes. The method can also include directing a plurality of pressurized fluid streams of entangling fluid in a direction towards the precursor web on the forming surface to move at least some of the fibers into the plurality of forming holes to create a fluid entangled web. The method can further include removing the fluid entangled web from the forming surface such that the at least some of the fibers moved into the plurality of forming holes provide a plurality of nodes. The plurality of nodes can have an anisotropy value greater than 1.0 as determined by the Node Analysis Test Method.
    Type: Application
    Filed: November 27, 2019
    Publication date: December 16, 2021
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith