Patents by Inventor Neil T. Scholl

Neil T. Scholl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11186927
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed from a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: November 30, 2021
    Assignee: Kimberly Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carillo
  • Publication number: 20210362125
    Abstract: An absorbent article includes an absorbent member positioned between a topsheet and a backsheet. The absorbent member contains at least one layer that includes superabsorbent particles containing a porous network that includes a plurality of nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers, wherein the superabsorbent particles exhibit a Vortex Time of about 80 seconds or less and a free swell gel bed permeability (GBP) of 5 darcys or more, of 10 darcys or more, of 60 darcys or more, or of 90 darcys or more.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 25, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Austin N. Pickett, Karen Goeders, Mark M. Mleziva, Theodore T. Tower, WanDuk Lee, Neil T. Scholl, Lori A. Eslinger, Yuriy Galabura, Dave Soerens
  • Patent number: 11155935
    Abstract: A method for forming porous fibers is provided. The fibers are formed from a thermoplastic composition containing a continuous phase, which includes a matrix polymer, and a nanoinclusion additive that is at least partially incompatible with the matrix polymer so that it becomes dispersed within the continuous phase as discrete nano-scale phase domains. The method generally includes traversing a bundle of the fibers over one or more draw bars that are in contact with a fluidic medium (e.g., water). In certain embodiments, for example, the draw bar(s) are submerged in the fluidic medium. The fluidic medium is lower than the melting temperature of the matrix polymer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 26, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Neil T. Scholl, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda, Ryan J. McEneany, Theodore T. Tower
  • Publication number: 20210292948
    Abstract: A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: July 25, 2018
    Publication date: September 23, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20210290450
    Abstract: A high topography nonwoven substrate includes synthetic binder fibers; a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
    Type: Application
    Filed: July 25, 2018
    Publication date: September 23, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Davis Dang H. Nhan, Cathleen M. Uttecht, Lori A. Eslinger, Neil T. Scholl, Jian Qin, Charles W. Colman, Deborah J. Calewarts, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda
  • Publication number: 20210252478
    Abstract: Superabsorbent particles have a median size of from about 50 to about 2,000 micrometers and contain a porous network that includes a plurality of nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers, wherein the superabsorbent particles exhibit a Vortex Time of about 80 seconds or less and a free swell gel bed permeability (GBP) of 5 darcys or more, of 10 darcys or more, of 20 darcys or more, of 30 darcys or more, of 60 darcys or more, or of 90 darcys or more. A method for forming such superabsorbent particles includes forming a composition that contains a superabsorbent polymer and a solvent system; contacting the composition with a non-solvent system to initiate formation of the porous network through phase inversion; removing non-solvent from the composition; and surface crosslinking the superabsorbent particles.
    Type: Application
    Filed: June 27, 2018
    Publication date: August 19, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Austin N. Pickett, Karen Goeders, Mark M. Mleziva, Theodore T. Tower, WanDuk Lee, Neil T. Scholl, Lori A. Eslinger, Yuriy Galabura, Dave Soerens, Kazuhiro Takahashi, Yusuke Ueda, Megumi Tomioka
  • Patent number: 11084916
    Abstract: A polymeric material having a multimodal pore size distribution is provided. The material is formed by applying a stress to a thermoplastic composition that contains first and second inclusion additives dispersed within a continuous phase that includes a matrix polymer. Through the use of particular types of inclusion additives and careful control over the manner in which such additives are dispersed within the polymer matrix, the present inventors have discovered that a unique, multimodal porous structure can be achieved.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 10, 2021
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Theodore T. Tower, David Glen Biggs, Neil T. Scholl, Thomas A. Eby, Antonio J. Carrillo
  • Publication number: 20210180216
    Abstract: Fibers that are formed from a thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density are provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. Fibers are thereafter formed and then stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”).
    Type: Application
    Filed: December 4, 2020
    Publication date: June 17, 2021
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Thomas A. Eby
  • Patent number: 10919229
    Abstract: A polymeric material that is capable of being employed as a build material and/or support material in a three-dimensional printer system is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: February 16, 2021
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl
  • Patent number: 10889696
    Abstract: Microparticles that have a multimodal pore size distribution are provided, Notably, the pore structure of the present invention can be formed without the need for complex techniques and solvent chemistries traditionally employed to form porous microparticles. Instead, the microparticles contain a polymeric material that is formed from a thermoplastic composition, which is simply strained to a certain degree to achieve the desired porous network structure.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: January 12, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby
  • Patent number: 10857705
    Abstract: A technique for initiating the formation of pores in a polymeric material that contains a thermoplastic composition is provided. The thermoplastic composition contains microinclusion and nanoinclusion additives dispersed within a continuous phase that includes a matrix polymer. To initiate pore formation, the polymeric material is mechanically drawn (e.g., bending, stretching, twisting, etc.) to impart energy to the interface of the continuous phase and inclusion additives, which enables the inclusion additives to separate from the interface to create the porous network. The material is also drawn in a solid state in the sense that it is kept at a temperature below the melting temperature of the matrix polymer.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: December 8, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva
  • Patent number: 10858762
    Abstract: Fibers that are formed from a thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density are provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. Fibers are thereafter formed and then stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”).
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 8, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Thomas A. Eby
  • Patent number: 10821085
    Abstract: A wipe containing a fibrous web on which is coated an antimicrobial composition is provided. The composition includes a botanical oil derived from a plant (e.g., thymol, carvacrol, etc.). Because the oil is volatile and tends to evaporate and lose efficacy prior to use, a protein is also employed to enhance the composition's long term stability and antimicrobial efficacy. The protein tends to form a substantially continuous film when coated onto the fibrous web. Because such proteins are typically stiff and brittle, a continuous film would restrict the ability of the fibers to move and bend, reducing web flexibility and drape. Thus, it is typically desired that the antimicrobial composition form a discontinuous coating on the web. In this regard, the present inventors have surprisingly discovered that the addition of an organopolysiloxane can help achieve a discontinuous coating without adversely impacting the ability of the protein to stabilize the oil.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: November 3, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jaehong Lee, Vasily A. Topolkaraev, Neil T. Scholl, YoungSook Kim, David W. Koenig, James H. Wang
  • Patent number: 10815374
    Abstract: A film that is formed from a thermoplastic composition is provided. The thermoplastic composition contains a rigid renewable polyester and a polymeric toughening additive. The toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. An increase in deformation force and elongational strain causes debonding to occur in the renewable polyester matrix at those areas located adjacent to the discrete domains. This can result in the formation of a plurality of voids adjacent to the discrete domains that can help to dissipate energy under load and increase tensile elongation. To even further increase the ability of the film to dissipate energy in this manner, the present inventors have discovered that an interphase modifier may be employed that reduces the degree of friction between the toughening additive and renewable polyester and thus reduces the stiffness (tensile modulus) of the film.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: October 27, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Thomas A. Eby
  • Publication number: 20200155375
    Abstract: An absorbent article comprising an absorbent member positioned between a topsheet and a backsheet is provided. The absorbent member contains at least one layer that comprises porous superabsorbent particles, wherein the particles exhibit a relative humidity microclimate of about 67% or less after being exposed to an atmosphere having a temperature of about 23° C. and relative humidity of 80% for a time period of 20 minutes.
    Type: Application
    Filed: July 20, 2018
    Publication date: May 21, 2020
    Inventors: Yuriy Galabura, Mark M. Mlieziva, J. Gavin MacDonald, Vasily A. Topolkaraev, Michelle McBride, Karien J. Rodriguez, Matthew Valaskey, Dave Soerens, Neil T. Scholl, WanDuk Lee
  • Patent number: 10640898
    Abstract: A polyolefin material that comprises a thermoplastic composition that is annealed and thereafter drawn in a solid state is provided. The composition contains a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores, wherein the thermoplastic composition has a glass transition temperature of from about ?20° C. to about 50° C. as determined in accordance with ASTM E1640-13.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: May 5, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva, Hristo A. Hristov, Yuriy Galabura
  • Patent number: 10640890
    Abstract: A method for forming porous fibers is provided. The fibers are formed from a thermoplastic composition containing a continuous phase, which includes a matrix polymer, and a nanoinclusion additive that is at least partially incompatible with the matrix polymer so that it becomes dispersed within the continuous phase as discrete nano-scale phase domains. The method includes traversing a bundle of the fibers through a multi-stage drawing system that includes at least a first fluidic drawing stage and a second fluidic drawing stage. The first drawing stage employs a first fluidic medium having a first temperature and the second drawing stage employs a second fluidic medium having a second temperature. The first and second temperatures are both lower than the melting temperature of the matrix polymer, and the first temperature is greater than the second temperature.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 5, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Neil T. Scholl, Vasily A. Topolkaraev, Antonio J. Carrillo Ojeda, Ryan J. McEneany, Theodore T. Tower
  • Publication number: 20190338097
    Abstract: A polymeric material that includes a thermoplastic composition containing a continuous phase that includes a matrix polymer and a siloxane component is provided. The siloxane component contains an ultrahigh molecular weight siloxane polymer that is dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Application
    Filed: January 19, 2018
    Publication date: November 7, 2019
    Inventors: Ryan J. McEneany, Yuriy Galabura, Antonio J. Carrillo Ojeda, Neil T. Scholl, Vasily A. Topolkaraev, David W. Hall, Juha P. Kemppinen, Peter S. Lortscher, Lori A. Eslinger, Brent M. Thompson, Gregory J. Wideman
  • Publication number: 20190071547
    Abstract: A color-changing polymeric material is provided. The material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer, colorant, microinclusion additive, and nanoinclusion additive, wherein the microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains. A porous network is formed in the polymeric material when subjected to a deformational strain in a solid state. The polymeric material exhibits a first color prior to being subjected to the deformational strain and a second color after being subjected to the deformational strain, the first color being different than the second color.
    Type: Application
    Filed: December 14, 2016
    Publication date: March 7, 2019
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Antonio J. Carrillo Ojeda, Brent M. Thompson
  • Patent number: 10195157
    Abstract: A delivery system containing an active agent within a polymeric material formed from a thermoplastic composition is provided. Through selective control over the particular nature of the thermoplastic composition, as well as the manner in which it is formed, the present inventors have discovered that a porous network can be created that contains a plurality of micropores and nanopores. The ability to create such a multimodal pore size distribution can allow the delivery rate of an active agent to be tailored for a particular use.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: February 5, 2019
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby