Patents by Inventor Neng-Kuo Chen

Neng-Kuo Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10115597
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Publication number: 20180291234
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Chia-Jung HSU, Yun-Lung HO, Neng-Kuo CHEN, Song-Yuan CHANG, Teng-Chun TSAI
  • Publication number: 20180219077
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20180219095
    Abstract: A fin structure disposed over a substrate and a method of forming a fin structure are disclosed. The fin structure includes a mesa, a channel disposed over the mesa, and a convex-shaped feature disposed between the channel and the mesa. The mesa has a first semiconductor material, and the channel has a second semiconductor material different from the first semiconductor material. The convex-shaped feature is stepped-shaped, stair-shaped, or ladder-shaped. The convex-shaped feature includes a first isolation feature disposed between the channel and the mesa, and a second isolation feature disposed between the channel and the first isolation feature. The first isolation feature is U-shaped, and the second isolation feature is rectangular-shaped. A portion of the second isolation feature is surrounded by the channel and another portion of the second isolation feature is surrounded by the first isolation feature.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Gin-Chen Huang, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9994736
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 12, 2018
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., UWIZ Technology Co., Ltd.
    Inventors: Chia-Jung Hsu, Yun-Lung Ho, Neng-Kuo Chen, Song-Yuan Chang, Teng-Chun Tsai
  • Patent number: 9953878
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a recess in a substrate and forming a first dielectric layer in the recess. A portion of the first dielectric layer is removed. A second dielectric layer is formed over the first dielectric layer. A gate structure is formed over the second dielectric layer.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Patent number: 9941367
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9929272
    Abstract: A fin structure disposed over a substrate and a method of forming a fin structure are disclosed. The fin structure includes a mesa, a channel disposed over the mesa, and a convex-shaped feature disposed between the channel and the mesa. The mesa has a first semiconductor material, and the channel has a second semiconductor material different from the first semiconductor material. The convex-shaped feature is stepped-shaped, stair-shaped, or ladder-shaped. The convex-shaped feature includes a first isolation feature disposed between the channel and the mesa, and a second isolation feature disposed between the channel and the first isolation feature. The first isolation feature is U-shaped, and the second isolation feature is rectangular-shaped. A portion of the second isolation feature is surrounded by the channel and another portion of the second isolation feature is surrounded by the first isolation feature.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20180069094
    Abstract: A method of fabricating a semiconductor device includes depositing a contact etch stop layer (CESL) over a dummy gate electrode, a source/drain (S/D) region and an isolation feature. The method further includes performing a first CMP to expose the dummy gate electrode. The method further includes removing an upper portion of the CESL. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the dummy gate electrode.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Inventors: Neng-Kuo CHEN, Clement Hsingjen WANN, Yi-An LIN, Chun-Wei CHANG, Sey-Ping SUN
  • Patent number: 9899496
    Abstract: The present disclosure provides a device having a doped active region disposed in a substrate. The doped active region having an elongate shape and extends in a first direction. The device also includes a plurality of first metal gates disposed over the active region such that the first metal gates each extend in a second direction different from the first direction. The plurality of first metal gates includes an outer-most first metal gate having a greater dimension measured in the second direction than the rest of the first metal gates. The device further includes a plurality of second metal gates disposed over the substrate but not over the doped active region. The second metal gates contain different materials than the first metal gates. The second metal gates each extend in the second direction and form a plurality of respective N/P boundaries with the first metal gates.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sey-Ping Sun, Sung-Li Wang, Chin-Hsiang Lin, Neng-Kuo Chen, Clement Hsingjen Wann
  • Patent number: 9881803
    Abstract: The present disclosure relates to a method of performing a chemical mechanical planarization (CMP) process with a high germanium-to-oxide removal selectivity and a low rate of germanium recess formation. The method is performed by providing a semiconductor substrate having a plurality of germanium compound regions including germanium interspersed between a plurality of oxide regions including an oxide. A slurry is then provided onto the semiconductor substrate. The slurry has an oxidant and an etching inhibitor configured to reduce a removal rate of the germanium relative to the oxide. A CMP process is then performed by bringing a chemical mechanical polishing pad in contact with top surfaces of the plurality of germanium compound regions and the plurality of oxide regions.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: January 30, 2018
    Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., UWiZ Technology Co., Ltd.
    Inventors: Chia-Jung Hsu, Yun-Lung Ho, Neng-Kuo Chen, Wen-Feng Chueh, Sey-Ping Sun, Song-Yuan Chang
  • Patent number: 9870956
    Abstract: An integrated circuit structure includes a semiconductor substrate, which includes a semiconductor strip. A Shallow Trench Isolation (STI) region is on a side of the semiconductor strip. The STI region includes a first portion comprising an oxide and a second portion free from oxide. The second portion separates the first portion from the semiconductor substrate. A semiconductor fin is over and aligned to the semiconductor strip, wherein the semiconductor fin is higher than a top surface of the STI region.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: January 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Neng-Kuo Chen, Gin-Chen Huang, Ching-Hong Jiang, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9818603
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a method of manufacturing a semiconductor device includes providing a substrate, the substrate includes a first fin, a second fin, and an isolation region disposed between the first fin and the second fin. The second fin includes a different material than a material of the substrate. The method includes forming an oxide over the first fin, the second fin, and a top surface of the isolation region at a temperature of about 400 degrees C. or less, and post-treating the oxide at a temperature of about 600 degrees C. or less.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: November 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Chi Lin, Chin-Hsiang Lin, Neng-Kuo Chen, Sey-Ping Sun
  • Patent number: 9812551
    Abstract: This description relates to a method of forming the gate electrode of a semiconductor device, the method including providing a substrate comprising a dummy gate electrode (DGE), a source/drain (S/D) region, a spacer on a dummy gate sidewall, and an isolation feature, depositing a contact etch stop layer (CESL) over the DGE, the S/D region and the spacer, depositing an interlayer dielectric (ILD) layer over the CESL, performing a first chemical mechanical polishing (CMP) to expose the CESL over the DGE, performing a second CMP to expose the DGE, removing an upper portion of the CESL and the spacer, and performing a third CMP to expose the CESL over the S/D region to produce a structure in which an entire top surface of the CESL over the S/D region and isolation feature is substantially co-planar with a top surface of the DGE.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: November 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo Chen, Clement Hsingjen Wann, Yi-An Lin, Chun-Wei Chang, Sey-Ping Sun
  • Publication number: 20170162669
    Abstract: This description relates to a method of forming the gate electrode of a semiconductor device, the method including providing a substrate comprising a dummy gate electrode (DGE), a source/drain (S/D) region, a spacer on a dummy gate sidewall, and an isolation feature, depositing a contact etch stop layer (CESL) over the DGE, the S/D region and the spacer, depositing an interlayer dielectric (ILD) layer over the CESL, performing a first chemical mechanical polishing (CMP) to expose the CESL over the DGE, performing a second CMP to expose the DGE, removing an upper portion of the CESL and the spacer, and performing a third CMP to expose the CESL over the S/D region to produce a structure in which an entire top surface of the CESL over the S/D region and isolation feature is substantially co-planar with a top surface of the DGE.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Inventors: Neng-Kuo CHEN, Clement Hsingjen WANN, Yi-An LIN, Chun-Wei CHANG, Sey-Ping SUN
  • Publication number: 20170140942
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Publication number: 20170098560
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 6, 2017
    Inventors: Chia-Jung HSU, Yun-Lung HO, Neng-Kuo CHEN, Song-Yuan CHANG, Teng-Chun TSAI
  • Patent number: 9607826
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9589803
    Abstract: This description relates to a gate electrode of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate electrode over the substrate including a first top surface and a sidewall; a source/drain (S/D) region at least partially disposed in the substrate on one side of the gate electrode; a spacer on the sidewall distributed between the gate electrode and the S/D region; and a contact etch stop layer (CESL) adjacent to the spacer and further comprising a portion extending over the S/D region, wherein the portion has a second top surface substantially coplanar with the first top surface.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo Chen, Clement Hsingjen Wann, Yi-An Lin, Chun-Wei Chang, Sey-Ping Sun
  • Patent number: 9559182
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang